Conformable matrix: Difference between revisions

Content deleted Content added
Examples: clarification, and standard wording
Tags: Mobile edit Mobile web edit
Line 4:
 
==Examples==
* If two matrices have the same dimensions (numbersnumber of rows and numbersnumber of columns), they are ''conformable for addition''.
* Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. That is, if {{math|'''A'''}} is an {{math|''m'' × ''n''}} matrix and {{math|'''B'''}} is an {{math|''s'' × ''p''}} matrix, then {{math|''n''}} needs to be equal to {{math|''s''}} for the matrix product {{math|'''AB'''}} to be defined. In this case, we say that {{math|'''A'''}} and {{math|'''B'''}} are ''conformable for multiplication'' (in that sequence).
* Since squaring a matrix involves multiplying it by itself ({{math|'''A'''<sup>'''2'''</sup> {{=}} '''AA'''}}) a matrix must be {{math|''m'' × ''m''}} (that is, it must be a [[square matrix]]) to be ''conformable for squaring''. Thus for example only a square matrix can be [[Idempotent matrix|idempotent]].