Content deleted Content added
shorten |
m Replace magic links with templates per local RfC - BRFA |
||
Line 61:
::::::Weinberg in his ''Lectures'', on page 34, explicitly expresses a wave function as a function thus:
::::::::::::::::<math>\psi (\bold x) \,\,\,\,\,= R(r)Y(\theta,\phi) ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, (2.1.21)</math><ref>[[Steven Weinberg|Weinberg, S.]] (2013). ''Lectures on Quantum Mechanics'', Cambridge University Press, Cambridge UK, {{ISBN
'''References'''
{{Reflist}}
Line 292:
:::::::German original (1932/1996), ''Mathematische Grundlagen der Quantenmechanik'', Springer, Berlin, ISBN-13: 978-3-642-64828-1, p. 79: "Einen Operator, der keine echten Fortsetzungen besitzt — der also an allen Stellen, wo er vernünftigerweise, d. h. ohne Durchbrechung des Hermiteschen Charakters, definiert werden könnte, auch schon definiert ist — nennen wir maximal. Wir haben also gesehen: nur zu maximalen Operatoren kann eine Zerlegung der Einheit gehören."[[User:Chjoaygame|Chjoaygame]] ([[User talk:Chjoaygame|talk]]) 04:41, 11 February 2016 (UTC)
:::::::Newton, R.G. (2002), in ''Quantum Physics: a Text for Graduate Students'', Springer, New York, {{ISBN
:::::::Bransden, B.H., Joachain, C.J. (1989/2000), ''Quantum Mechanics'', second edition, Pearson–Prentice–Hall, Harlow UK, {{ISBN
:::::::[[Gennaro Auletta|Auletta, G.]], Fortunato, M., [[Giorgio Parisi|Parisi, G.]] (2009), ''Quantum Mechanics'', Cambridge University Press, Cambridge UK, {{ISBN
:::::::I Googled the phrase 'maximal set of commuting observables', and found [https://books.google.com.au/books?id=4ZwKCAAAQBAJ&pg=PA16&lpg=PA16&dq=maximal+set+of+commuting+observables+quantum+mechanics&source=bl&ots=ihL-ouMAoN&sig=iXg5Sm2CzApf0ZEKLZC0OsNO4Xk&hl=en&sa=X&ved=0ahUKEwiQg8GC6u7KAhVEkZQKHQ4qB_IQ6AEIMTAG#v=onepage&q=maximal%20set%20of%20commuting%20observables%20quantum%20mechanics&f=false this], and [https://books.google.com.au/books?id=lJaX2PsTxNoC&pg=PT94&lpg=PT94&dq=maximal+set+of+commuting+observables+quantum+mechanics&source=bl&ots=N7mHtcmXS9&sig=lIFMSkB-3JiMp3XG_yMjMaGqBAg&hl=en&sa=X&ved=0ahUKEwiQg8GC6u7KAhVEkZQKHQ4qB_IQ6AEILjAF#v=onepage&q=maximal%20set%20of%20commuting%20observables%20quantum%20mechanics&f=false also this], and [https://books.google.com.au/books?id=Xg2NZD73b4cC&pg=PA107&lpg=PA107&dq=maximal+set+of+commuting+observables+quantum+mechanics&source=bl&ots=XNpZbW3V-K&sig=hjtTtngz9OkXfbzrTtv2A4EeZA4&hl=en&sa=X&ved=0ahUKEwiQg8GC6u7KAhVEkZQKHQ4qB_IQ6AEIKjAE#v=onepage&q=maximal%20set%20of%20commuting%20observables%20quantum%20mechanics&f=false moreover this], and yet [https://books.google.com.au/books?id=eWdDAAAAQBAJ&pg=PA131&lpg=PA131&dq=maximal+set+of+commuting+observables+quantum+mechanics&source=bl&ots=5ICKajbc5X&sig=UHUeWc7xUNMAAFvJnAQlfR9MhMM&hl=en&sa=X&ved=0ahUKEwiQg8GC6u7KAhVEkZQKHQ4qB_IQ6AEIOTAI#v=onepage&q=maximal%20set%20of%20commuting%20observables%20quantum%20mechanics&f=false again this], and [https://books.google.com.au/books?id=v1owGsfiJcoC&pg=PA4&lpg=PA4&dq=maximal+set+of+commuting+observables+quantum+mechanics&source=bl&ots=k9hKAHG4-4&sig=wGW8ASjUSj6u_x9XrRjxzHZpvts&hl=en&sa=X&ved=0ahUKEwiQg8GC6u7KAhVEkZQKHQ4qB_IQ6AEIPDAJ#v=onepage&q=maximal%20set%20of%20commuting%20observables%20quantum%20mechanics&f=false now this].[[User:Chjoaygame|Chjoaygame]] ([[User talk:Chjoaygame|talk]]) 04:18, 11 February 2016 (UTC)
Line 379:
:"And how is "a state vector is an [[equivalence class]] of wave functions"?" I would have thought that was a standard way of expressing the situation. I learnt it when I studied algebra. It seems to be assumed as common mathematical parlance by the writer of this sentence: "Assuming that the unchanging reading of an ideal thermometer is a valid "tagging" system for the equivalence classes of a set of equilibrated thermodynamic systems, then if a thermometer gives the same reading for two systems, those two systems are in thermal equilibrium, and if we thermally connect the two systems, there will be no subsequent change in the state of either one." The sentence was posted in [https://en.wikipedia.org/w/index.php?title=Zeroth_law_of_thermodynamics&diff=next&oldid=667219209 this] edit by respected Editor [[User:PAR|PAR]]. My usage intends that all the wave functions that belong to a particular state are interconvertible by a group of one-to-one mathematical transformations. That makes them members of an equivalence class. (The equivalence class has the structure of a Hilbert space, more or less.) I find this form of expression helpful to show the relation between wave functions and state vectors. It may or may not be so for others.[[User:Chjoaygame|Chjoaygame]] ([[User talk:Chjoaygame|talk]]) 09:39, 14 February 2016 (UTC)
:Well, it seems that I have led myself astray by looking in Wikipedia and Google. Looking at a textbook on my shelves that I forgot I had, I find that indeed, as you say, a component is there defined as a scalar. Bloom, D.M. (1979), ''Linear Algebra and Geometry'', Cambridge University Press, Cambridge UK, {{ISBN
:See [[Talk:Scalar projection#This article has gravely misled me, and helped to make me look foolish, because I thought that on such a simple matter, an article like this could be trusted.]][[User:Chjoaygame|Chjoaygame]] ([[User talk:Chjoaygame|talk]]) 12:59, 14 February 2016 (UTC)
|