Content deleted Content added
Added an SVG image for the g(r) calculation example. I can easily change it if somebody thinks it's a bit hard to view. |
m →Experimental: Journal cites: fix page range, using AWB (12158) |
||
Line 125:
One can determine <math>g(r)</math> indirectly (via its relation with the structure factor <math>S(q)</math>) using [[neutron scattering]] or [[x-ray scattering]] data. The technique can be used at very short length scales (down to the atomic level<ref>{{Cite journal | last1 = Yarnell | first1 = J. | last2 = Katz | first2 = M. | last3 = Wenzel | first3 = R. | last4 = Koenig | first4 = S. | title = Structure Factor and Radial Distribution Function for Liquid Argon at 85 °K | doi = 10.1103/PhysRevA.7.2130 | journal = Physical Review A | volume = 7 | issue = 6 | pages = 2130 | year = 1973 | pmid = | pmc = |bibcode = 1973PhRvA...7.2130Y }}</ref>) but involves significant space and time averaging (over the sample size and the acquisition time, respectively). In this way, the radial distribution function has been determined for a wide variety of systems, ranging from liquid metals<ref>{{Cite journal | last1 = Gingrich | first1 = N. S. | last2 = Heaton | first2 = L. | doi = 10.1063/1.1731688 | title = Structure of Alkali Metals in the Liquid State | journal = The Journal of Chemical Physics | volume = 34 | issue = 3 | pages = 873 | year = 1961 | pmid = | pmc = |bibcode = 1961JChPh..34..873G }}</ref> to charged colloids.<ref>{{Cite journal | last1 = Sirota | first1 = E. | last2 = Ou-Yang | first2 = H. | last3 = Sinha | first3 = S. | last4 = Chaikin | first4 = P. | last5 = Axe | first5 = J. | last6 = Fujii | first6 = Y. | doi = 10.1103/PhysRevLett.62.1524 | title = Complete phase diagram of a charged colloidal system: A synchro- tron x-ray scattering study | journal = Physical Review Letters | volume = 62 | issue = 13 | pages = 1524–1527 | year = 1989 | pmid = 10039696| pmc = |bibcode = 1989PhRvL..62.1524S }}</ref> It should be noted that going from the experimental <math>S(q)</math> to <math>g(r)</math> is not straightforward and the analysis can be quite involved.<ref>{{Cite journal | last1 = Pedersen | first1 = J. S. | doi = 10.1016/S0001-8686(97)00312-6 | title = Analysis of small-angle scattering data from colloids and polymer solutions: Modeling and least-squares fitting | journal = Advances in Colloid and Interface Science | volume = 70 | pages = 171–201 | year = 1997 | pmid = | pmc = }}</ref>
It is also possible to calculate <math>g(r)</math> directly by extracting particle positions from traditional or confocal microscopy.<ref>{{Cite journal | last1 = Crocker | first1 = J. C.| last2 = Grier | first2 = D. G.| doi = 10.1006/jcis.1996.0217 | title = Methods of Digital Video Microscopy for Colloidal Studies | journal = Journal of Colloid and Interface Science | volume = 179 | pages =
==Higher-order correlation functions==
|