Content deleted Content added
Line 11:
== Outline of the algorithm==
Suppose we want to evaluate the spline curve for a parameter value <math> x \in [u_{
We can express the curve as
:<math> \mathbf{s}(x) = \sum_{i=0}^{p-1} \mathbf{d}_i N_i^n(x) , </math>
where<ref>http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-basis.html</ref>
:<math>N_i^n(x)=\frac{x-
and
:<math>N_i^0(x)=\left\{\begin{matrix} 1, & \mbox{if }x \in [\bar u_{i},\bar u_{i+1}) \\ 0, & \mbox{otherwise } \end{matrix}\right.</math>▼
▲:<math>N_i^0(x)=\left\{\begin{matrix} 1, & \mbox{if }x \in [
Due to the spline locality property,
:<math> \mathbf{s}(x) = \sum_{i=\ell-n}^{\ell} \mathbf{d}_i N_i^n(x) </math>
So the value <math>\mathbf{s}(x)</math> is determined by the control points <math> \mathbf{d}_{\ell-n},\mathbf{d}_{\ell-n+1},\dots,\mathbf{d}_{\ell} </math>; the other control points <math>\mathbf{d}_i</math> have no influence. De Boor's algorithm, described in the next section, is a procedure which efficiently calculates the expression for <math> \mathbf{s}(x) </math>.
|