M/G/k queue: Difference between revisions

Content deleted Content added
removed grandparent category of Category:Single queueing nodes
According to the reference 16, C denotes the coefficient of variation of the service time, not C^2.
Line 17:
:<math>E[W^{\text{M/G/}k}] = \frac{C^2+1}{2} \mathbb E [ W^{\text{M/M/}c}]</math>
 
where ''C''<sup>2</sup> is the [[coefficient of variation]] of the service time distribution. [[Ward Whitt]] described this approximation as “usually an excellent approximation, even given extra information about the service-time distribution."<ref>{{Cite journal | last1 = Whitt | first1 = W. | authorlink1 = Ward Whitt| title = Approximations for the GI/G/m Queue| doi = 10.1111/j.1937-5956.1993.tb00094.x | journal = [[Production and Operations Management]]| volume = 2 | issue = 2 | pages = 114–161 | year = 2009 | url = http://www.columbia.edu/~ww2040/ApproxGIGm1993.pdf| pmid = | pmc = }}</ref>
 
However, it is known that no approximation using only the first two moments can be accurate in all cases.<ref name="gbdz">{{Cite journal | last1 = Gupta | first1 = V. | last2 = Harchol-Balter | first2 = M. | last3 = Dai | first3 = J. G. | last4 = Zwart | first4 = B. | title = On the inapproximability of M/G/K: Why two moments of job size distribution are not enough | doi = 10.1007/s11134-009-9133-x | journal = [[Queueing Systems]]| volume = 64 | pages = 5 | year = 2009 | url = http://repository.cmu.edu/cgi/viewcontent.cgi?article=1867&context=compsci| pmid = | pmc = }}</ref>