Bell X-1: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m punto a fine nota |
m punto a fine nota |
||
Riga 73:
Il '''Bell X-1''', inizialmente noto come '''Bell XS-1''', fu un [[aeroplano]] sperimentale che l'[[azienda aeronautica]] [[Stati Uniti d'America|statunitense]] [[Bell Helicopter Textron|Bell Aircraft Co.]] produsse nella seconda metà degli [[Anni 1940|anni quaranta]] sulla base di specifiche della [[National Advisory Committee for Aeronautics|NACA]] e con il finanziamento dell'[[United States Army Air Forces|USAAF]].
Si trattò del primo velivolo statunitense progettato espressamente per fini di ricerca nel campo delle alte velocità; il programma di cui l'X-1 fu il risultato era finalizzato, in particolare, a esplorare le velocità comprese circa tra [[Numero di Mach|Mach]] 0,75 e Mach 1,25, cioè il cosiddetto [[regime transonico]]; non destinato alla [[produzione in serie]], il velivolo venne costruito in sei esemplari (significativamente modificati nel corso della loro carriera di volo) che svolsero un gran numero di voli sperimentali tra il 1946 e il 1958. Il 14 ottobre 1947 un X-1 divenne, ai comandi di [[Charles Yeager|Charles "Chuck" Yeager]], il primo velivolo pilotato a superare in volo orizzontale la [[velocità del suono]].<ref group=N>Si ritiene che altri voli pilotati anteriori a quello di Yeager del 14 ottobre 1947 abbiano potuto superare la velocità del suono, benché solamente in picchiata e senza la conferma di misurazioni adeguatamente documentate; in particolare, risulta altamente probabile che il pilota collaudatore della [[North American Aviation]] [[George Welch]] abbia compiuto una serie di voli che superarono di poco Mach 1 lanciandosi in picchiata a bordo del prototipo di aereo da caccia [[North American F-86 Sabre|North American XP-86]] a partire dal 1º ottobre 1947; il primo volo di Welch e dell'XP-86 a superare Mach 1 con la conferma dei [[Teodolite|teodoliti]] [[radar]] ad alta precisione della NACA comunque avvenne solo il 13 novembre. Si veda {{Cita web|url=http://www.airspacemag.com/history-of-flight/mach.html?c=y&story=fullstory |titolo=Mach Match |autore=Al Blackburn |data=gennaio 1999 |sito=[http://www.airspacemag.com/ AirSpaceMag.com] |accesso=15 gennaio 2013 |lingua=en}}.</ref>
L'X-1 fu il capostipite della serie degli [[Lista di Aerei X|aerei X]] statunitensi e il modo in cui furono gestite le ricerche fu utilizzato anche per tutti i successivi aerei della serie. Le procedure e il personale impiegati nel programma X-1 contribuirono a gettare le basi per il futuro [[Programma Apollo|programma spaziale statunitense]] degli [[anni 1960|anni sessanta]]; il programma inoltre definì e rafforzò il coordinamento tra le richieste delle forze armate statunitensi, le capacità industriali e i sistemi di ricerca.
Riga 79:
== Storia del progetto ==
=== Antefatto: le prime ricerche sulle velocità transoniche ===
Benché la possibilità pratica del volo a [[Regime transonico|velocità transoniche]]<ref group=N>Per "velocità transoniche" si intendono i regimi compresi tra il [[numero di Mach critico|numero di Mach critico inferiore]] e circa cinque quarti della [[velocità del suono]], ovvero tra circa [[Numero di Mach|Mach]] 0,75 e circa Mach 1,25, dove la velocità del suono stessa corrisponde a Mach 1; la velocità del suono varia a seconda di diversi parametri, scendendo in particolare da circa 340 [[Metro al secondo|m/s]] al livello del mare a 295 m/s a 12 000 [[Metro|m]]: pertanto, si preferisce indicare con Mach 1 la velocità del suono a una data quota. Si veda {{en}} {{Cita libro |autore=Richard P. Hallion |titolo=[http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100025873_2010028255.pdf NASA's First 50 Years – Historical Perspectives] |capitolo=[http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100025896_2010028361.pdf Chapter 10 – The NACA, NASA, and the Supersonic-Hypersonic Frontier] |curatore=Steven J. Dick |editore=NASA |anno=2010 |isbn=978-0-16-084965-7 |p=223 }}.</ref> si fosse realizzata solo nel corso della seconda metà degli [[Anni 1930|anni trenta]], già dall'epoca della [[prima guerra mondiale]] si erano manifestate, in particolari circostanze, quelle anomalie [[Aerodinamica|aerodinamiche]] che, per l'appunto, caratterizzano il volo a velocità prossime a quella del suono: le [[Elica|eliche]] dei biplani, le cui estremità potevano toccare velocità di circa [[Numero di Mach|Mach]] 0,75 e, quindi, accelerare il flusso d'aria oltre Mach 1, incorrevano in drastici cali di efficienza (con aumento della [[Resistenza aerodinamica|resistenza]] e riduzione della [[portanza]]) dovuti alla formazione di [[Onda d'urto (fluidodinamica)|onde d'urto]] e alla [[Numero di Mach critico#Stallo d'urto|separazione di flussi]] di aria [[Turbolenza|turbolenta]] dalla loro superficie; a problemi analoghi andarono incontro anche le [[Ala (aeronautica)|ali]] degli aeroplani quando, specialmente nel corso della [[seconda guerra mondiale]], essi cominciarono a essere in grado di raggiungere velocità di circa Mach 0,7.<ref>{{Cita|Hallion 2010|pp. 224-225.|Hallion}}.</ref>
Le basi teoriche dell'aerodinamica moderna videro la luce in [[Germania]] nei primi tre decenni del [[XX secolo|ventesimo secolo]]. Sotto la guida di [[Ludwig Prandtl]] presso l'Aerodynamische Versuchsanstalt (in italiano Laboratorio di Ricerca Aerodinamica), venne formata una generazione di scienziati che aprirono la strada agli studi sistematici delle alte velocità. Verso la fine degli [[anni 1930|anni trenta]] il [[Reichsluftfahrtministerium|Ministero dell'Aria del Reich]] promosse un programma quinquennale sull'aerodinamica delle alte velocità applicata a [[Aereo a reazione|velivoli a reazione]], [[aereo da caccia|caccia]] e [[bombardiere|bombardieri]] a lungo raggio, con il sovvenzionamento di grandi [[galleria del vento|gallerie del vento]] transoniche e [[Regime supersonico|supersoniche]].<ref group=N>In regime supersonico, la velocità del flusso è ovunque (tranne in una sottile zona aderente al corpo chiamata [[Strato limite di quantità di moto|strato limite]]) maggiore di Mach 1. Questa condizione si ottiene con una opportuna geometria del corpo che comporti la presenza di soli [[Onda d'urto (fluidodinamica)#Onde d'urto oblique|urti obliqui]], evitando la formazione di [[Onda d'urto (fluidodinamica)#Onda d'urto normale|urti normali]] e la conseguente presenza locale di flussi subsonici. In una [[Galleria del vento#Gallerie supersoniche|galleria supersonica]], oltre alla intrinseca difficoltà di generare un flusso supersonico privo di significative turbolenze, si somma la problematica relativa alla riflessione degli urti generati dal modello sulle pareti della camera di prova della galleria che, interferendo con quelli del modello, andrebbero ad alterare i risultati ottenuti. Si veda anche {{Cita web|url=http://www.treccani.it/enciclopedia/galleria-aerodinamica_%28Enciclopedia-Italiana%29/|titolo=Galleria aerodinamica|sito=[[Enciclopedia Treccani]]|accesso=6 gennaio 2013}}.</ref> Al termine della seconda guerra mondiale alcune di queste vennero smantellate e ricostruite in [[Francia]] e negli Stati Uniti, che si avvantaggiarono anche delle competenze e dei risultati ottenuti fino ad allora dagli scienziati tedeschi.<ref>{{en}} {{Cita libro|titolo=Aeronautical Research in Germany: From Lilienthal until Today|autore=Ernst Heinrich Hirschel, Horst Prem, Gero Madelung|url=http://books.google.it/books?id=OoFcHOLpCskC&pg=PA87|editore=Springer|anno=2004|isbn=978-3-540-40645-7}}</ref>
In [[Italia]], fino all'[[Armistizio di Cassibile|armistizio dell'8 settembre 1943]], furono condotti presso la [[Direzione Superiore Studi ed Esperienze]] di [[Guidonia]] esperimenti e studi sulle onde d'urto nella galleria del vento "Ultrasonora" sotto la direzione di [[Antonio Ferri]]. Vennero raccolti sperimentalmente numerosi dati sulle prestazioni di profili a velocità transoniche (fino a Mach 0,94) mai raggiunte prima.<ref>{{Cita web|lingua=en|titolo=Engineer in charge – Chapter 11|sito=[[Langley Research Center|NASA Langley Research Center]]|url=http://history.nasa.gov/SP-4305/ch11.htm|accesso=25 gennaio 2013}}</ref>
Le ricerche condotte negli Stati Uniti da Frank W. Caldwell e Elisha Fales prima e da Lyman J. Briggs, [[Hugh Latimer Dryden|Hugh L. Dryden]] e G. F. Hull poi approfondirono la conoscenza dei fenomeni di [[Flusso compressibile|compressibilità]] legati alle velocità transoniche; vennero studiati i problemi di aumento della resistenza e di diminuzione della portanza legati alla formazione di onde d'urto e alla separazione della vena fluida dalle superfici alari, e si scoprì che tali effetti negativi venivano minimizzati dall'impiego di [[Profilo alare|profili alari]] sottili e simmetrici. Tuttavia, contemporaneamente, la comunità aeronautica mondiale sviluppò l'opinione che, a causa della riduzione dell'efficienza dei velivoli al loro approssimarsi a Mach 1, la velocità del suono costituisse un limite insuperabile all'aumento delle prestazioni degli aeroplani; si cominciò così a parlare di "[[Muro del suono|barriera del suono]]".<ref name = hallion_225-226>{{Cita|Hallion 2010|pp. 225-226.|Hallion}}.</ref>
[[File:NACA P-51D modified for wingflow transonic research.png|thumb|left|Un [[Aereo da caccia|caccia]] [[North American P-51 Mustang|North American P-51D Mustang]] della NACA modificato per la ricerca transonica: un modellino con la forma di un Bell XS-1 con i [[Piano orizzontale (aeronautica)|piani orizzontali di coda]] [[Ala a freccia|a freccia]] veniva fissato a metà dell'apertura alare del caccia e, collegato a strumenti contenuti in quello che normalmente sarebbe stato il vano per l'armamento, era immerso in un flusso d'aria accelerato fino a oltre Mach 1 durante il volo.]]
Riga 98:
=== Il programma XS-1 ===
Nel 1944, in seguito a una serie di incontri tra alcuni enti militari, industriali e di ricerca degli Stati Uniti, emerse un programma congiunto in cui la componente aerea dell'esercito ([[United States Army Air Forces]] – USAAF)<ref group=N>A partire dal settembre 1947, l'[[aeronautica militare]] degli Stati Uniti sarebbe divenuta una [[forza armata]] indipendente dall'esercito ([[United States Army]]), passando da [[United States Army Air Forces]] a [[United States Air Force]]. Si veda {{Cita|Hallion 2010|p. 233.|Hallion}}.</ref> e della marina ([[United States Navy]]) avrebbero dovuto finanziare e collaborare a un progetto di sviluppo di velivoli ad alta velocità sotto la direzione tecnica della NACA.<ref name = hallion_233>{{Cita|Hallion 2010|p. 233.|Hallion}}.</ref>
L'esercito, che già dal 1944 mirava ad ottenere nel più breve tempo possibile un velivolo capace di superare la velocità del suono, puntò sul [[motore a razzo]] come forma di propulsione prescelta; la marina (appoggiata, in questa visione, dalla stessa NACA) prediligeva invece il motore a [[turbogetto]], che avrebbe consentito di volare a velocità più contenute ma per periodi notevolmente più prolungati (e che inoltre avrebbe dato origine a velivoli più facili da adattare all'impiego pratico). Fu così che nacquero i due progetti complementari noti, l'uno, come XS-1 (da ''eXperimental Supersonic'')<ref name=jenkins/> e, l'altro, come D-558 (dal quale avrebbero avuto origine i [[Douglas D-558-1 Skystreak]] e [[Douglas D-558-2 Skyrocket|D-558-2 Skyrocket]]).<ref name=hallion_233/>
Riga 174:
Tra il 20 dicembre 1946 e il 5 giugno 1947 Goodlin compì altri venti voli, sia motorizzati che in planata, con gli X-1 numero 1 e numero 2<ref name=luther_3/> (l'X-1 numero 1 aveva raggiunto il numero 2 a Muroc all'inizio dell'aprile 1947 e compì il suo primo volo a motore il 10 dello stesso mese).<ref name=flightsumm/> L'addetto alla supervisione della Bell, oltre a Walt Williams e Joel Baker per la NACA, era questa volta Richard Frost.<ref name=flightsumm/>
Con ciò si concludeva ufficialmente l'obbligo contrattuale della Bell di dimostrare l'efficienza in volo dell'aereo fino a Mach 0,8;<ref name=luther_3/> sorsero allora delle controversie tra la Bell e l'USAAF a proposito dei costi per la prosecuzione del programma: con il termine della seconda guerra mondiale infatti, vennero tagliati drasticamente i fondi alle forze armate per la ricerca nel settore aeronautico.<ref name = "Takeoff">{{Cita libro |curatore=Elio Besostri |titolo= [[Take Off - L'aviazione|Take Off – L'aviazione]], Volume 4 |anno= 1988 |editore= Istituto Geografico De Agostini |città= Novara |pp=1037-1041|cid=Takeoff}}</ref> L'aviazione militare offrì alla compagnia privata un contratto a prezzo fisso che essa rifiutò, e quindi l'USAAF e la NACA decisero di proseguire le sperimentazioni in volo per conto proprio,<ref name=flightsumm/> portando avanti autonomamente i test che sarebbero presto culminati nel superamento della velocità del suono.<ref name = luther_3-4>{{Cita|Luther 2007|pp. 3-4.|Luther}}.</ref>
Quando, nel giugno 1947, gli X-1 vennero ceduti dalla Bell all'USAAF, il primo velivolo aveva al suo attivo diciannove voli effettuati ai comandi di Woolams e Goodlin, mentre il secondo ne aveva portati a termine diciotto ai comandi di Goodlin e [[Alvin M. Johnston|Alvin "Tex" Johnston]]; di questi ventitré erano stati voli a motore e quattordici semplici planate. L'aereo aveva raggiunto una velocità massima pari a Mach 0,82 e aveva dimostrato di poter reggere sollecitazioni fino a 8,7 g; il motore a razzo si era dimostrato piuttosto affidabile e i dati raccolti avevano confermato le informazioni che la NACA già possedeva.<ref name=flightsumm/>
Riga 203:
=== La seconda generazione ===
Al fine di estendere gli esperimenti che avevano coinvolto gli X-1 della prima generazione fino a oltre il doppio della velocità del suono e ad altitudini di oltre 25 000 m, portando avanti anche ricerche sulla stabilità e il controllo del volo ad alta velocità oltre che sul [[riscaldamento aerodinamico]],<ref name = luther_12-13>{{Cita|Luther 2007|pp. 12-13.|Luther}}.</ref> nel novembre 1947 l'aeronautica militare statunitense autorizzò l'inizio di una serie di studi che avrebbero condotto a un contratto (W-33-038-ac-20062) con cui la Bell si impegnava a sviluppare una seconda serie significativamente modificata di quattro X-1, che sarebbero stati identificati da altrettante lettere in progressione alfabetica: X-1A, X-1B, X-1C, X-1D<ref name=flightsumm/> (il progetto dell'X-1C, pensato per testare sistemi d'arma alle alte velocità, venne cancellato prima del completamento dell'aereo).<ref name = jenkins_6>{{Cita|Jenkins, Landis, Miller 2003|p. 6|Jenkins, Landis, Miller}}.</ref>
I tre aeroplani che vennero effettivamente costruiti, quasi identici tra di loro,<ref name=luther_12/> avevano un aspetto esteriore piuttosto simile a quello dei loro immediati predecessori ma se ne differenziavano per una serie di dettagli importanti: erano 1,52 m (5 ft) più lunghi e 1 134 kg (2 500 lbs) più pesanti, montavano ali con uno spessore dell'8%,<ref name=flightsumm/> avevano un nuovo cupolino che garantiva al pilota una migliore visibilità e che consentiva l'accesso all'abitacolo sollevandosi, montavano una nuova [[turbopompa]] di alimentazione, avevano autonomia maggiore,<ref name = nasa2>{{Cita web|url=http://www.dfrc.nasa.gov/gallery/photo/X-1E/description.html |titolo=Bell X-1 Series Aircraft Description |sito=[http://www.nasa.gov/centers/dryden/home/index.html NASA Dryden Flight Research Center] |lingua=en |accesso=26 dicembre 2012}}</ref> un carrello irrobustito e una diversa configurazione della fusoliera. Il disegno dell'ala e dei piani di coda era immutato, mentre il propulsore era lo stesso, ma nella versione XLR-11-RM-5 anziché XLR-11-RM-3.<ref name=luther_12/>
Riga 272:
|-
! Apertura alare
| 8,53 m (28 ft 0 in)<ref name=nasm/> || colspan="3" | 8,53 m (28 ft 0 in)<ref name=luther_12/><ref name=456fis/> || 6,96 m (22 ft 10 in)<ref name = miller_21-35>{{Cita|Miller 2001|pp. 21-35.|Miller}}.</ref>
|-
! Altezza
|