Content deleted Content added
KolbertBot (talk | contribs) m Bot: HTTP→HTTPS |
m →Mechanism: Removed invisible unicode characters + other fixes (Task 55), replaced: → using AWB (12151) |
||
Line 97:
=== Mechanism ===
A mechanism for the reaction has been suggested based on [[density functional theory]] calculations.<ref>{{cite journal |author1=F Himo |author2=T Lovell |author3=R Hilgraf |author4=VV Rostovtsev |author5=L Noodleman |author6=KB Sharpless |author7=VV Fokin | title = Copper(I)-Catalyzed Synthesis of Azoles, DFT Study Predicts Unprecedented Reactivity and Intermediates | year = 2005 | journal = [[Journal of the American Chemical Society]] | pages = 210–216 | doi = 10.1021/ja0471525 | volume = 127}}</ref> Copper is a 1st row [[transition metal]]. It has the electronic configuration [Ar] 3d<sup>10</sup> 4s<sup>1</sup>. The copper (I) species generated in situ forms a [[pi complex]] with the triple bond of a terminal alkyne. In the presence of a base, the terminal hydrogen, being the most acidic is deprotonated first to give a Cu [[acetylide]] intermediate. Studies have shown that the reaction is [[second order reaction|second order]] with respect to Cu. It has been suggested that the transition state involves two copper atoms.<ref>{{Cite journal|last=Rodionov|first=Valentin O.|last2=Fokin|first2=Valery V.|last3=Finn|first3=M. G.|date=2005-04-08|title=Mechanism of the Ligand-Free CuI-Catalyzed Azide–Alkyne Cycloaddition Reaction|url=http://onlinelibrary.wiley.com/doi/10.1002/anie.200461496/abstract|journal=Angewandte Chemie International Edition|language=en|volume=44|issue=15|pages=2210–2215|doi=10.1002/anie.200461496|issn=1521-3773}}</ref><ref>{{Cite journal|last=Worrell|first=B. T.|last2=Malik|first2=J. A.|last3=Fokin|first3=V. V.|date=2013-04-26|title=Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions|url=http://science.sciencemag.org/content/340/6131/457|journal=Science|language=en|volume=340|issue=6131|pages=457–460|doi=10.1126/science.1229506|issn=0036-8075|pmc=3651910|pmid=23558174}}</ref><ref>{{Cite journal|last=Iacobucci|first=Claudio|last2=Reale|first2=Samantha|last3=Gal|first3=Jean-François|last4=
The reaction is assisted by the copper, which, when coordinated with the acetylide lowers the pKa of the alkyne C-H by up to 9.8 units. Thus under certain conditions, the reaction may be carried out even in the absence of a base.
|