Content deleted Content added
m →top: adjust bold |
KolbertBot (talk | contribs) m Bot: HTTP→HTTPS |
||
Line 3:
The '''homotopy analysis method''' ('''HAM''') is a semi-analytical technique to solve [[nonlinear]] [[ordinary differential equations|ordinary]]/[[partial differential equations|partial]] [[differential equations]]. The homotopy analysis method employs the concept of the [[homotopy]] from [[topology]] to generate a convergent series solution for nonlinear systems. This is enabled by utilizing a homotopy-[[Taylor series|Maclaurin series]] to deal with the nonlinearities in the system.
The HAM was first devised in 1992 by [[Liao Shijun]] of [[Shanghai Jiaotong University]] in his PhD dissertation<ref>{{citation | last=Liao | first=S.J. | title=The proposed homotopy analysis technique for the solution of nonlinear problems | publisher=PhD thesis, Shanghai Jiao Tong University | year=1992 }}</ref> and further modified<ref>{{citation | last=Liao | first=S.J. | title=An explicit, totally analytic approximation of Blasius’ viscous flow problems | journal=International Journal of Non-Linear Mechanics | volume=34 | issue=4 | pages=759–778 | year=1999 | doi=10.1016/S0020-7462(98)00056-0|bibcode = 1999IJNLM..34..759L }}</ref> in 1997 to introduced a non-zero auxiliary parameter, referred to as the '''convergence-control parameter''', '''''c'''''<sub>'''0'''</sub>, to construct a homotopy on a differential system in general form.<ref>{{citation | last=Liao | first=S.J. | title=Beyond Perturbation: Introduction to the Homotopy Analysis Method | publisher=Chapman & Hall/ CRC Press | ___location=Boca Raton | year=2003 | isbn=1-58488-407-X }}[
== Characteristics==
Line 13:
== Applications ==
In the last twenty years, the HAM has been applied to solve a growing number of nonlinear [[ordinary differential equations|ordinary]]/[[partial differential equation]]s in science, finance, and engineering.<ref name="HAM in NDEs">{{citation | last=Liao | first=S.J. | title=Homotopy Analysis Method in Nonlinear Differential Equations| publisher=Springer & Higher Education Press| ___location=Berlin & Beijing | year=2012 | isbn=978-7-04-032298-9}} [
For example, multiple steady-state resonant waves in deep and finite water depth<ref>{{citation|last1=Xu|first1=D.L.|last2=Lin|first2=Z.L.|last3=Liao|first3=S.J.|last4=Stiassnie|first4=M.|title=On the steady-state fully resonant progressive waves in water of finite depth|journal =Journal of Fluid Mechanics|volume = 710|pages=379–418|year=2012|doi = 10.1017/jfm.2012.370|bibcode = 2012JFM...710..379X }}</ref> were found with the [[wave resonance]] criterion of arbitrary number of traveling [[gravity waves]]; this agreed with Phillips' criterion for four waves with small amplitude. Further, a unified wave model applied with the HAM,<ref>{{citation | last=Liao | first=S.J. | title= Do peaked solitary water waves indeed exist? | journal=Communications in Nonlinear Science and Numerical Simulation|year=2013 | doi=10.1016/j.cnsns.2013.09.042|arxiv = 1204.3354 |bibcode = 2014CNSNS..19.1792L | volume=19 | pages=1792–1821}}</ref> admits not only the traditional smooth progressive periodic/solitary waves, but also the progressive solitary waves with peaked crest in finite water depth. This model shows peaked solitary waves are consistent solutions along with the known smooth ones. Additionally, the HAM has been applied to many other nonlinear problems such as nonlinear [[heat transfer]],<ref>{{citation | last1=Abbasbandy | first1=S. | title= The application of homotopy analysis method to nonlinear equations arising in heat transfer | journal=Physics Letters A| volume=360| pages=109–113|year=2006 | doi=10.1016/j.physleta.2006.07.065|bibcode = 2006PhLA..360..109A }}</ref> the [[limit cycle]] of nonlinear dynamic systems,<ref>{{citation|last1= Chen|first1=Y.M.|first2=J.K. |last2=Liu|title=Uniformly valid solution of limit cycle of the Duffing–van der Pol equation|journal = Mechanics Research Communications|volume= 36|year= 2009|pages= 845–850|doi=10.1016/j.mechrescom.2009.06.001}}</ref> the American [[put option]],<ref>{{citation | last1=Zhu | first1=S.P. | title= An exact and explicit solution for the valuation of American put options | journal=Quantitative Finance| volume=6| pages=229–242|year=2006 | issue=3 | doi=10.1080/14697680600699811}}</ref> the exact [[Navier–Stokes equation]],<ref>{{citation|last=Turkyilmazoglu|first=M.|title=Purely analytic solutions of the compressible boundary layer flow due to a porous rotating disk with heat transfer|journal=Physics of Fluids|volume=21|pages=106104|year=2009|doi=10.1063/1.3249752|bibcode = 2009PhFl...21j6104T }}</ref> the option pricing under [[stochastic volatility]],<ref>{{citation|last1=Park|first1=Sang-Hyeon|last2=Kim|first2=Jeong-Hoon|title=Homotopy analysis method for option pricing under stochastic volatility|journal=Applied Mathematics Letters|volume= 24|year= 2011|pages= 1740–1744|doi=10.1016/j.aml.2011.04.034}}</ref> the [[electrohydrodynamic]] flows,<ref>{{citation|last=Mastroberardino|first=A.|title=Homotopy analysis method applied to electrohydrodynamic flow|journal = Commun. Nonlinear. Sci. Numer. Simulat.| volume=16|year= 2011| pages=2730–2736|doi=10.1016/j.cnsns.2010.10.004|bibcode = 2011CNSNS..16.2730M }}</ref> the [[Poisson–Boltzmann equation]] for semiconductor devices,<ref>{{citation|last1=Nassar|first1= Christopher J.| first2= Joseph F. |last2=Revelli|first3=Robert J. |last3=Bowman|title=Application of the homotopy analysis method to the Poisson–Boltzmann equation for semiconductor devices |journal = Commun Nonlinear Sci Numer Simulat |volume=16 |year=2011|pages= 2501–2512|doi=10.1016/j.cnsns.2010.09.015|bibcode = 2011CNSNS..16.2501N }}</ref> and others.
Line 67:
== Frequency response analysis for nonlinear oscillators ==
The HAM has recently been reported to be useful for obtaining analytical solutions for nonlinear frequency response equations. Such solutions are able to capture various nonlinear behaviors such as hardening-type, softening-type or mixed behaviors of the oscillator,.<ref>{{cite journal|last1=Tajaddodianfar|first1=Farid|title=Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method|journal=Microsystem Technologies|doi=10.1007/s00542-016-2947-7|url=
== References ==
|