Content deleted Content added
→Distance covariance: formulation |
m →Properties: {{Ordered list |list_style_type=lower-roman}} |
||
Line 113:
===Distance correlation===
{{Ordered list |list_style_type=lower-roman
this is in contrast to Pearson's correlation, which can be negative.
(iii) <math>\operatorname{dCor}_n(X,Y) = 1</math> implies that dimensions of the linear subspaces spanned by <math>X</math> and <math>Y</math> samples respectively are almost surely equal and if we assume that these subspaces are equal, then in this subspace <math>Y = A + b\,\mathbf{C}X</math> for some vector <math>A</math>, scalar <math>b</math>, and [[orthonormal matrix]] <math>\mathbf{C}</math>.▼
▲
}}
===Distance covariance===
{{Ordered list |list_style_type=lower-roman
▲(ii) <math>\operatorname{dCov}^2(a_1 + b_1\,\mathbf{C}_1\,X, a_2 + b_2\,\mathbf{C}_2\,Y) = |b_1\,b_2|\operatorname{dCov}^2(X,Y)</math>
for all constant vectors <math>a_1, a_2</math>, scalars <math>b_1, b_2</math>, and orthonormal matrices <math>\mathbf{C}_1, \mathbf{C}_2</math>.
:<math>
\operatorname{dCov}(X_1 + X_2, Y_1 + Y_2) \leq \operatorname{dCov}(X_1, Y_1) + \operatorname{dCov}(X_2, Y_2).
Line 135:
Equality holds if and only if <math>X_1</math> and <math>Y_1</math> are both constants, or <math>X_2</math> and <math>Y_2</math> are both constants, or <math>X_1, X_2, Y_1, Y_2</math> are mutually independent.
}}
This last property is the most important effect of working with centered distances.
Line 151:
===Distance variance===
{{Ordered list |list_style_type=lower-roman
▲(ii) <math>\operatorname{dVar}_n(X) = 0</math> if and only if every sample observation is identical.
| If {{mvar|X}} and {{mvar|Y}} are independent then <math>\operatorname{dVar}(X + Y) \leq\operatorname{dVar}(X) + \operatorname{dVar}(Y)</math>.
Equality holds in (iv) if and only if one of the random variables <math>X</math> or <math>Y</math> is a constant.▼
}}
▲Equality holds in (iv) if and only if one of the random variables
==Generalization==
|