Content deleted Content added
No edit summary |
|||
Line 1:
{| class="wikitable" align="right" style="margin-left:10px" width=240
!bgcolor=#efdcc3 colspan=2|Order-
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 22:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Order-
== Geometry==
Line 40:
{{-}}
=== Order-
{| class="wikitable" align="right" style="margin-left:10px" width=240
!bgcolor=#efdcc3 colspan=2|Order-
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 58:
|bgcolor=#efdcc3|Vertex figure||[[Order-4 hexagonal tiling|{∞,4}]] [[File:H2 tiling 24i-1.png|50px]]<BR>r{∞,∞} [[File:H2_tiling_2ii-2.png|50px]]
|-
|bgcolor=#efdcc3|Dual||[[Order-
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,∞,4]
Line 64:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-
It has four [[Infinite-order triangular tiling]]s, {3,∞}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many Infinite-order triangular tilings existing around each vertex in an [[order-4 hexagonal tiling]] [[vertex arrangement]].
Line 77:
{{-}}
=== Order-
{| class="wikitable" align="right" style="margin-left:10px" width=280
!bgcolor=#efdcc3 colspan=2|Order-
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 95:
|bgcolor=#efdcc3|Vertex figure||[[Order-5 hexagonal tiling|{∞,5}]] [[File:H2 tiling 25i-1.png|40px]]
|-
|bgcolor=#efdcc3|Dual||[[Order-
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,∞,5]
Line 101:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''
{| class=wikitable width=480
Line 110:
{{-}}
===Order-
{| class="wikitable" align="right" style="margin-left:10px" width=240
!bgcolor=#efdcc3 colspan=2|Order-
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 128:
|bgcolor=#efdcc3|Vertex figure||[[Order-6 heptagonal tiling|{∞,6}]] [[File:H2 tiling 26i-4.png|40px]]<BR>{(∞,3,∞)} [[File:H2 tiling 3ii-2.png|40px]]
|-
|bgcolor=#efdcc3|Dual||[[Order-
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,∞,6]
Line 134:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Order-
{| class=wikitable width=480
Line 142:
{{-}}
===Order-
{| class="wikitable" align="right" style="margin-left:10px" width=240
!bgcolor=#efdcc3 colspan=2|Order-
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 160:
|bgcolor=#efdcc3|Vertex figure||[[Infinite-order heptagonal tiling|{∞,∞}]] [[File:H2 tiling 2ii-4.png|40px]]<BR>{(∞,∞,∞)} [[File:H2 tiling iii-4.png|40px]]
|-
|bgcolor=#efdcc3|Dual||[[Order-
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[∞,∞,3]<BR>[3,((∞,∞,∞))]
Line 166:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Order-
{| class=wikitable width=480
Line 176:
{{-}}
=== Order-
{| class="wikitable" align="right" style="margin-left:10px"
!bgcolor=#efdcc3 colspan=2|Order-
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 192:
|bgcolor=#efdcc3|[[Vertex figure]]||[[heptagonal tiling|{∞,3}]]
|-
|bgcolor=#efdcc3|Dual||[[Order-
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[4,∞,3]
Line 198:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''
The [[Schläfli symbol]] of the ''
{| class=wikitable
Line 207:
|}
=== Order-
{| class="wikitable" align="right" style="margin-left:10px"
!bgcolor=#efdcc3 colspan=2|Order-
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 224:
|bgcolor=#efdcc3|[[Vertex figure]]||[[heptagonal tiling|{∞,3}]]
|-
|bgcolor=#efdcc3|Dual||[[Order-
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[5,∞,3]
Line 230:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Order-
The [[Schläfli symbol]] of the ''order-6-3 pentagonal honeycomb'' is {5,∞,3}, with three ''infinite-order pentagonal tilings'' meeting at each edge. The [[vertex figure]] of this honeycomb is a heptagonal tiling, {∞,3}.
Line 239:
|}
=== Order-
{| class="wikitable" align="right" style="margin-left:10px"
!bgcolor=#efdcc3 colspan=2|Order-
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 255:
|bgcolor=#efdcc3|[[Vertex figure]]||[[heptagonal tiling|{∞,3}]]
|-
|bgcolor=#efdcc3|Dual||[[Order-
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[6,∞,3]
Line 261:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''
The [[Schläfli symbol]] of the ''
{| class=wikitable
Line 288:
|bgcolor=#efdcc3|[[Vertex figure]]||[[heptagonal tiling|{∞,3}]]
|-
|bgcolor=#efdcc3|Dual||[[Order-
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[∞,∞,3]
Line 329:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Order-
All vertices are ultra-ideal (existing beyond the ideal boundary) with four [[order-5 square tiling]]s existing around each edge and with an [[order-4 heptagonal tiling]] [[vertex figure]].
Line 342:
=== Order-infinite-5 pentagonal honeycomb===
{| class="wikitable" align="right" style="margin-left:10px" width=240
!bgcolor=#efdcc3 colspan=2|Order-
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 364:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-
All vertices are ultra-ideal (existing beyond the ideal boundary) with five infinite-order pentagonal tilings existing around each edge and with an [[order-5 pentagonal tiling]] [[vertex figure]].
Line 376:
=== Order-infinite-6 hexagonal honeycomb===
{| class="wikitable" align="right" style="margin-left:10px" width=280
!bgcolor=#efdcc3 colspan=2|Order-
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 398:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Order-
{| class=wikitable
Line 433:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-
{| class=wikitable
|