Order-infinite-3 triangular honeycomb: Difference between revisions

Content deleted Content added
No edit summary
Line 1:
{| class="wikitable" align="right" style="margin-left:10px" width=240
!bgcolor=#efdcc3 colspan=2|Order-infinityinfinite-3 triangular honeycomb
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 22:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Order-infinityinfinite-3 triangular honeycomb''' (or '''3,∞,3 honeycomb''') is a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {3,∞,3}.
 
== Geometry==
Line 40:
 
{{-}}
=== Order-infinityinfinite-4 triangular honeycomb===
{| class="wikitable" align="right" style="margin-left:10px" width=240
!bgcolor=#efdcc3 colspan=2|Order-infinityinfinite-4 triangular honeycomb
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 58:
|bgcolor=#efdcc3|Vertex figure||[[Order-4 hexagonal tiling|{&infin;,4}]] [[File:H2 tiling 24i-1.png|50px]]<BR>r{&infin;,&infin;} [[File:H2_tiling_2ii-2.png|50px]]
|-
|bgcolor=#efdcc3|Dual||[[Order-infinityinfinite-3 square honeycomb|{4,&infin;,3}]]
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,&infin;,4]
Line 64:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinityinfinite-4 triangular honeycomb''' (or '''3,&infin;,4 honeycomb''') is a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {3,&infin;,4}.
 
It has four [[Infinite-order triangular tiling]]s, {3,&infin;}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many Infinite-order triangular tilings existing around each vertex in an [[order-4 hexagonal tiling]] [[vertex arrangement]].
Line 77:
{{-}}
 
=== Order-infinityinfinite-5 triangular honeycomb===
{| class="wikitable" align="right" style="margin-left:10px" width=280
!bgcolor=#efdcc3 colspan=2|Order-infinityinfinite-5 triangular honeycomb
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 95:
|bgcolor=#efdcc3|Vertex figure||[[Order-5 hexagonal tiling|{&infin;,5}]] [[File:H2 tiling 25i-1.png|40px]]
|-
|bgcolor=#efdcc3|Dual||[[Order-infinityinfinite-3 pentagonal honeycomb|{5,&infin;,3}]]
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,&infin;,5]
Line 101:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Orderorder-infinityinfinite-3 triangular honeycomb''' (or '''3,&infin;,5 honeycomb''') is a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {3,&infin;,5}. It has five [[infinite-order triangular tiling]], {3,&infin;}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many infinite-order triangular tilings existing around each vertex in an ''order-5 heptagonal tiling'' [[vertex figure]].
 
{| class=wikitable width=480
Line 110:
{{-}}
 
===Order-infinityinfinite-6 triangular honeycomb===
{| class="wikitable" align="right" style="margin-left:10px" width=240
!bgcolor=#efdcc3 colspan=2|Order-infinityinfinite-6 triangular honeycomb
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 128:
|bgcolor=#efdcc3|Vertex figure||[[Order-6 heptagonal tiling|{&infin;,6}]] [[File:H2 tiling 26i-4.png|40px]]<BR>{(&infin;,3,&infin;)} [[File:H2 tiling 3ii-2.png|40px]]
|-
|bgcolor=#efdcc3|Dual||[[Order-infinityinfinite-3 hexagonal honeycomb|{6,&infin;,3}]]
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,&infin;,6]
Line 134:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Order-infinityinfinite-6 triangular honeycomb''' (or '''3,&infin;,6 honeycomb''') is a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {3,&infin;,6}. It has infinitely many [[infinite-order triangular tiling]], {3,&infin;}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many infinite-order triangular tilings existing around each vertex in an ''order-6 heptagonal tiling'', {&infin;,6}, [[vertex figure]].
 
{| class=wikitable width=480
Line 142:
{{-}}
 
===Order-infinityinfinite-infinite triangular honeycomb===
{| class="wikitable" align="right" style="margin-left:10px" width=240
!bgcolor=#efdcc3 colspan=2|Order-infinityinfinite-infinite triangular honeycomb
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 160:
|bgcolor=#efdcc3|Vertex figure||[[Infinite-order heptagonal tiling|{&infin;,∞}]] [[File:H2 tiling 2ii-4.png|40px]]<BR>{(&infin;,∞,&infin;)} [[File:H2 tiling iii-4.png|40px]]
|-
|bgcolor=#efdcc3|Dual||[[Order-infinityinfinite-3 apeirogonal honeycomb|{∞,&infin;,3}]]
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[∞,&infin;,3]<BR>[3,((&infin;,∞,&infin;))]
Line 166:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Order-infinityinfinite-infinite triangular honeycomb''' (or '''3,&infin;,∞ honeycomb''') is a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {3,&infin;,∞}. It has infinitely many [[infinite-order triangular tiling]], {3,&infin;}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many infinite-order triangular tilings existing around each vertex in an ''infinite-order heptagonal tiling'', {&infin;,∞}, [[vertex figure]].
 
{| class=wikitable width=480
Line 176:
 
{{-}}
=== Order-infinityinfinite-3 square honeycomb===
{| class="wikitable" align="right" style="margin-left:10px"
!bgcolor=#efdcc3 colspan=2|Order-infinityinfinite-3 square honeycomb
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 192:
|bgcolor=#efdcc3|[[Vertex figure]]||[[heptagonal tiling|{&infin;,3}]]
|-
|bgcolor=#efdcc3|Dual||[[Order-infinityinfinite-4 triangular honeycomb|{3,&infin;,4}]]
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[4,&infin;,3]
Line 198:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Orderorder-infinityinfinite-3 square honeycomb''' (or '''4,&infin;,3 honeycomb''') a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]). Each infinite cell consists of a [[heptagonal tiling]] whose vertices lie on a [[Hypercycle (geometry)|2-hypercycle]], each of which has a limiting circle on the ideal sphere.
 
The [[Schläfli symbol]] of the ''Orderorder-infinityinfinite-3 square honeycomb'' is {4,&infin;,3}, with three order-4 heptagonal tilings meeting at each edge. The [[vertex figure]] of this honeycomb is a heptagonal tiling, {&infin;,3}.
 
{| class=wikitable
Line 207:
|}
 
=== Order-infinityinfinite-3 pentagonal honeycomb===
 
{| class="wikitable" align="right" style="margin-left:10px"
!bgcolor=#efdcc3 colspan=2|Order-infinityinfinite-3 pentagonal honeycomb
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 224:
|bgcolor=#efdcc3|[[Vertex figure]]||[[heptagonal tiling|{&infin;,3}]]
|-
|bgcolor=#efdcc3|Dual||[[Order-infinityinfinite-5 triangular honeycomb|{3,&infin;,5}]]
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[5,&infin;,3]
Line 230:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Order-infinityinfinite-3 pentagonal honeycomb''' (or '''5,&infin;,3 honeycomb''') a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]). Each infinite cell consists of an [[infinite-order pentagonal tiling]] whose vertices lie on a [[Hypercycle (geometry)|2-hypercycle]], each of which has a limiting circle on the ideal sphere.
 
The [[Schläfli symbol]] of the ''order-6-3 pentagonal honeycomb'' is {5,&infin;,3}, with three ''infinite-order pentagonal tilings'' meeting at each edge. The [[vertex figure]] of this honeycomb is a heptagonal tiling, {&infin;,3}.
Line 239:
|}
 
=== Order-infinityinfinite-3 hexagonal honeycomb===
{| class="wikitable" align="right" style="margin-left:10px"
!bgcolor=#efdcc3 colspan=2|Order-infinityinfinite-3 hexagonal honeycomb
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 255:
|bgcolor=#efdcc3|[[Vertex figure]]||[[heptagonal tiling|{&infin;,3}]]
|-
|bgcolor=#efdcc3|Dual||[[Order-infinityinfinite-6 triangular honeycomb|{3,&infin;,6}]]
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[6,&infin;,3]
Line 261:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Orderorder-infinityinfinite-3 hexagonal honeycomb''' (or '''6,&infin;,3 honeycomb''') a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]). Each infinite cell consists of a [[order-6 hexagonal tiling]] whose vertices lie on a [[Hypercycle (geometry)|2-hypercycle]], each of which has a limiting circle on the ideal sphere.
 
The [[Schläfli symbol]] of the ''Orderorder-infinityinfinite-3 hexagonal honeycomb'' is {6,&infin;,3}, with three order-5 hexagonal tilings meeting at each edge. The [[vertex figure]] of this honeycomb is a heptagonal tiling, {&infin;,3}.
 
{| class=wikitable
Line 288:
|bgcolor=#efdcc3|[[Vertex figure]]||[[heptagonal tiling|{&infin;,3}]]
|-
|bgcolor=#efdcc3|Dual||[[Order-infinityinfinite-infinite triangular honeycomb|{3,&infin;,&infin;}]]
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[&infin;,&infin;,3]
Line 329:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Order-infinityinfinite-4 square honeycomb''' (or '''4,&infin;,4 honeycomb''') a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {4,&infin;,4}.
 
All vertices are ultra-ideal (existing beyond the ideal boundary) with four [[order-5 square tiling]]s existing around each edge and with an [[order-4 heptagonal tiling]] [[vertex figure]].
Line 342:
=== Order-infinite-5 pentagonal honeycomb===
{| class="wikitable" align="right" style="margin-left:10px" width=240
!bgcolor=#efdcc3 colspan=2|Order-infinityinfinite-5 pentagonal honeycomb
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 364:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinityinfinite-5 pentagonal honeycomb''' (or '''5,&infin;,5 honeycomb''') a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {5,&infin;,5}.
 
All vertices are ultra-ideal (existing beyond the ideal boundary) with five infinite-order pentagonal tilings existing around each edge and with an [[order-5 pentagonal tiling]] [[vertex figure]].
Line 376:
=== Order-infinite-6 hexagonal honeycomb===
{| class="wikitable" align="right" style="margin-left:10px" width=280
!bgcolor=#efdcc3 colspan=2|Order-infinityinfinite-6 hexagonal honeycomb
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
Line 398:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''Order-infinityinfinite-6 hexagonal honeycomb''' (or '''6,&infin;,6 honeycomb''') is a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {6,&infin;,6}. It has six [[infinite-order hexagonal tiling]]s, {6,&infin;}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many hexagonal tilings existing around each vertex in an [[order-6 heptagonal tiling]] [[vertex arrangement]].
 
{| class=wikitable
Line 433:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinityinfinite-infinite apeirogonal honeycomb''' (or '''∞,∞,∞ honeycomb''') is a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {∞,∞,∞}. It has infinitely many [[infinite-order apeirogonal tiling]] {∞,∞} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many infinite-order apeirogonal tilings existing around each vertex in an [[infinite-order heptagonal tiling]] [[vertex figure]].
 
{| class=wikitable