Order-infinite-3 triangular honeycomb: Difference between revisions

Content deleted Content added
Line 450:
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|6|node|infin|node|6|node}}<BR>{{CDD|node_1|6|node|infin|node|6|node_h0}} = {{CDD|node_1|6|node|split1-ii|branch}}
|-
|bgcolor=#efdcc3|Cells||[[orderinfinite-5order heptagonal tiling|{6,&infin;}]] [[File:H2 tiling 25i-4.png|60px]]
|-
|bgcolor=#efdcc3|Faces||[[hexagon|{6}]]
Line 464:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-6 hexagonal honeycomb''' (or '''6,&infin;,6 honeycomb''') is a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {6,&infin;,6}. It has six [[infinite-order hexagonal tiling]]s, {6,&infin;}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many hexagonal tilings existing around each vertex in an [[order-6 heptagonalapeirogonal tiling]] [[vertex arrangement]].
 
{| class=wikitable