Content deleted Content added
Undid revision 803218316 by 217.209.22.25 (talk) Tag: Non-autoconfirmed user rapidly reverting edits |
m Reverted edits by 95.215.40.182 (talk) to last version by 217.209.22.25 |
||
Line 6:
* Track multiple moving sources.
Precisely, we are interested in solving these problems in noisy environments (in the presence of noise and interfering signals). [[Estimation theory]] is an important and basic part of signal processing field, which used to deal with estimation problem in which the values of several parameters of the system should be estimated based on measured/empirical data that has a random component. As the number of applications increases, estimating temporal and spatial parameters become more important. Array processing emerged in the last few decades as an active area and was centered on the ability of using and combining data from different sensors (antennas) in order to deal with specific estimation task (spatial and temporal processing). In addition to the information that can be extracted from the collected data the framework uses the advantage prior knowledge about the geometry of the sensor array to perform the estimation task.
Array processing is used in [[radar]], [[sonar]], seismic exploration, anti-jamming and [[wireless]] communications. One of the main advantages of using array processing along with an array of sensors is a smaller foot-print. The problems associated with array processing include the number of sources used, their [[direction of arrival]]s, and their signal [[waveforms]].<ref name="utexas1">Torlak, M. [http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/13_Array_Processing/lecture13/lecture13.pdf Spatial Array Processing]. Signal and Image Processing Seminar. University of Texas at Austin.</ref><ref name="ref1">{{cite book|last=J Li|first=[[
[[File:Aray Prcessing Model.png|thumb|Sensors array]]
There are four assumptions in array processing. The first assumption is that there is uniform propagation in all directions of isotropic and non-dispersive medium. The second assumption is that for far field array processing, the radius of propagation is much greater than size of the array and that there is plane wave propagation. The third assumption is that there is a zero mean white noise and signal, which shows uncorrelation. Finally, the last assumption is that there is no coupling and the calibration is perfect.<ref name="utexas1"/>
|