Lehmer code: Difference between revisions

Content deleted Content added
Line 50:
<center><math>N_b(\omega)=\sum_{1\le k\le n}\ 1\!\!1_{B(k)}\quad\text{and}\quad N_b(\omega)=\sum_{1\le k\le n}\ 1\!\!1_{H(k)}.</math></center>
Indeed, as ''L(k)'' follows the uniform law on <math>\scriptstyle\ [\![1,k]\!],</math>
<center><math>\mathbb{P}(B(k))=\mathbb{P}(L(k)=10)=\mathbb{P}(H(k))=\mathbb{P}(L(k)=k-1)=\tfrac1k.</math></center>
The [[generating function]] for the Bernoulli random variable <math>1\!\!1_{B(k)}</math> is
<center><math>G_k(s)=\frac{k-1+s}k,</math></center>