Elementary matrix transformations: Difference between revisions

Content deleted Content added
No edit summary
Line 1:
[[ja:行列の基本変形]]
 
'''Elementary matrix transformations''' or '''Elementaryelementary row and column transformations''' are [[Linear transformation|linear transformations]] which are normally used in [[Gauss elimination method|gauss elimination]] to solve a set of linear equations.
 
We distinguish three types of elementary transformations and their corresponding matrices:
# '''Row -switching''' transformations,
# '''Row -multiplying''' transformations,
# '''Linear combinator''' transformations.
 
===1. Row -switching transformations===
 
===1. Row switching transformations===
This transformation, ''T<sub>ij</sub>'', switches all matrix elements on row i with their counterparts on row j. The matrix resulting in this transformation is:<br>
:<math>
Line 19 ⟶ 18:
:*Since the [[Determinant|determinant]] of the [[Identity_matrix|identity matrix]] is unity, ''det[T<sub>ij</sub>]=-1''. It follows that for any conformable square matrix ''A'': ''det[T<sub>ij</sub>A]=-det[A]''.
 
===2. Row -multiplying transformations===
This transformation, ''T<sub>i</sub>(m)'', multiplies all elements on row i with ''m''. The matrix resulting in this transformation is:<br>
:<math>
Line 40 ⟶ 39:
:*''det[T<sub>ij</sub>(m)]=1''. Therefore, for a conformable square matrix ''A'': ''det[T<sub>ij</sub>(m)A]=det[A]''.
 
'''==See also'''==
 
'''See also'''
*[[Linear algebra]]
*[[Gauss elimination method]]