Content deleted Content added
No edit summary |
m →top: fixed citation template(s) to remove page from Category:CS1 maint: Extra text & general fixes using AWB |
||
Line 47:
:<math> H(z) = k_{\mathrm d} \frac{ \prod_{i=1}^M (1 - e^{\xi_iT}z^{-1})}{ \prod_{i=1}^N (1 - e^{p_iT}z^{-1})} </math>
The gain <math>k_{\mathrm d}</math> must be adjusted to normalize the desired gain, typically set to match the analog filter's gain at DC by [[Final value theorem|setting <math>s=0</math> and <math>z=1</math>]] and solving for <math>k_{\mathrm d}</math>.<ref name=":1" /><ref name=":2">{{Cite book|url=https://www.worldcat.org/oclc/869825370|title=Feedback control of dynamic systems|last=Franklin|first=Gene F.|date=2015|publisher=Pearson|others=Powell, J. David, Emami-Naeini, Abbas|year=|isbn=0133496597|edition=Seventh
Since the mapping wraps the ''s''-plane's <math>j\omega</math> axis around the ''z''-plane's unit circle repeatedly, any zeros (or poles) greater than the Nyquist frequency will be mapped to an aliased ___location.<ref name=":0">{{Cite book|url=|title=Theory and application of digital signal processing|last=Rabiner|first=Lawrence R|last2=Gold|first2=Bernard|date=1975|publisher=Prentice-Hall|year=|isbn=0139141014|___location=Englewood Cliffs, New Jersey|pages=
In the (common) case that the analog transfer function has more poles than zeros, the zeros at <math>s=\infty</math> may optionally be shifted down to the Nyquist frequency by putting them at <math>z=-1</math>, dropping off like the BLT.<ref name=":3" /><ref name=":1" /><ref name=":2" /><ref name=":0" />
|