Esagono logico: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Riga 43:
== Ulteriori estensioni ==
È stato dimostrato che sia il quadrato che l'esagono logico possono essere ulteriormente estesi ad un cubo logico, attraverso una serie regolare di oggetti n-dimensionali chiamati "bi-simplessi logici di dimensione n". Il modello va anche anche di là di questo.<ref>Moretti, Pellissier</ref>
Blanchè [1953; 1966] notò che aggiungendo '''Y''' ed '''U''' si otteneva un esagono logico '''AUEOYI''' che includeva tre quadrati delle opposizioni '''AEOI''', '''YAUO''' e '''YEUI''', ciascuno dei quali esibiva al proprio interno le relazioni note (contrarie, contradditorie, subcontrarie). <br/>
Un simile esagono si ottiene ogni volta che partiamo da tre proposizioni reciprocamente esclusive come '''A''', '''E''' e '''Y''' (Dubois e Prade, 2012a).<br/>
Passando alla notazione propria di una logica del primo ordine per negare i predicati, abbiamo <math>¬P</math> e <math>¬Q</math> per la negazione di P e Q fino ad ottenere un quadrato logico delle negazioni '''aeoi''' (in carattere minuscolo) in cui aggiungiamo l'ipotesi che insieme dei <math>¬P</math> non sia un insieme vuoto.
A questo punto, le 8 proposizioni ('''A, E, O, I, a, e, o , i''') possono essere organizzate nel cubo logico. Ipotizzare che esiste almeno un elementi di P e almeno un elemento di <math>¬P</math>, implica che essite almeno un elemento di Q ed almeno un elemento di <math>¬Q</math>. Da ciò segue che:<br/>
* '''A''' implica '''i''',
* '''a''' implica '''I''',
* '''e''' implica '''O''',
* '''E''' implica '''o'''.
e che le coppie ai vertici:<br/>
* '''a''' ed '''E''',
* '''A''' ed '''e'''
non possono essere entrambe vere;<br/>
mentre i vertici<br*/>
* '''i''' ed '''O''',
* '''I''' ed '''o'''
non possono essere entrambe false. Infine, non esistono relazioni logiche tra '''A''' ed '''a''', '''E''' ed '''e''', '''I''' ed '''i''', '''O''' ed '''o'''.
== Note ==
|