Content deleted Content added
Line 19:
* <math> \sum_{i=1}^d{x_i^k},k \ge 1 </math> is Schur-convex.
* The function <math> f(x) = \prod_{i=1}^n x_i </math> is Schur-concave, when we assume all <math> x_i > 0 </math>. In the same way, all the [[Elementary symmetric polynomial|Elementary symmetric function]]s are Schur-concave, when <math> x_i > 0 </math>.
* A natural interpretation of [[majorization]] is that if <math> x \succ y </math> then <math> x </math> is
* If <math> g </math> is a convex function defined on a real interval, then <math> \sum_{i=1}^n g(x_i) </math> is Schur-convex.
* A probability example: If <math> X_1, \dots, X_n </math> are [[exchangeable random variables]], then the function <math> \text{E} \prod_{j=1}^n X_j^{a_j} </math> is Schur-convex as a function of <math> a=(a_1, \dots, a_n) </math>, assuming that the expectations exist.
|