Hierarchical matrix: Difference between revisions

Content deleted Content added
m Journal cites, Added 15 dois to journal cites
m Journal cites:, added 1 DOI
Line 15:
<ref name="BERJ03">{{cite journal|last=Bebendorf|first=Mario|last2=Rjasanow|first2=Sergej|date=2003|title=Adaptive low-rank approximation of collocation matrices|journal=Computing|volume=70|pages=1&ndash;24|doi=10.1007/s00607-002-1469-6}}</ref>
<ref name="BOGR05">{{cite journal|last=Börm|first=Steffen|last2=Grasedyck|first2=Lars|date=2005|title=Hybrid cross approximation of integral operators|journal=Num. Math.|volume=101|pages=221&ndash;249|doi=10.1007/s00211-005-0618-1}}</ref>
,<ref name="BOCH16">{{cite journal|last=Börm|first=Steffen|last2=Christophersen|first2=Sven|date=2016|title=Approximation of integral operators by Green quadrature and nested cross approximation|journal=Num. Math.|volume=133|pages=409&ndash;442|url=https://dx.doi.org/10.1007/s00211-015-0757-y|doi=10.1007/s00211-015-0757-y}}</ref>,
preconditioning the resulting systems of linear equations
,<ref name="FAMEPR16">{{cite journal|last=Faustmann|first=Markus|last2=Melenk|first2=J.&nbsp;Markus|last3=Praetorius|first3=Dirk|date=2016|title=Existence of H-matrix approximants to the inverses of BEM matrices: The simple-layer operator|journal=Math. Comp.|volume=85|pages=119&ndash;152|url=https://dx.doi.org/10.1090/mcom/2990|doi=10.1090/mcom/2990}}</ref>
Line 21:
<ref name="BEHA03">{{cite journal|last=Bebendorf|first=Mario|last2=Hackbusch|first2=Wolfgang|date=2003|title=Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with <math>L^\infty</math>-coefficients|journal=Num. Math.|volume=95|pages=1&ndash;28|doi=10.1007/s00211-002-0445-6}}</ref>
<ref name="BO10">{{cite journal|last=Börm|first=Steffen|date=2010|title=Approximation of solution operators of elliptic partial differential equations by H- and H<sup>2</sup>-matrices|journal=Num. Math.|volume=115|pages=165&ndash;193|url=https://dx.doi.org/10.1007/s00211-009-0278-7|doi=10.1007/s00211-009-0278-7}}</ref>
,<ref name ="FAMEPR13">{{cite journal|last=Faustmann|first=Markus|last2=Melenk|first2=J.&nbsp;Markus|last3=Praetorius|first3=Dirk|date=2015|title=H-matrix approximability of the inverses of FEM matrices|journal=Num. Math.|volume=131|pages=615&ndash;642|url=https://dx.doi.org/10.1007/s00211-015-0706-9|doi=10.1007/s00211-015-0706-9}}</ref>,
a rank proportional to <math>\log(1/\epsilon)^\gamma</math> with a small constant <math>\gamma</math> is sufficient to ensure an
accuracy of <math>\epsilon</math>.
Line 124:
In order to treat very large problems, the structure of hierarchical matrices can be improved:
H<sup>2</sup>-matrices
<ref name="HAKHSA02">{{cite journal|last=Hackbusch|first=Wolfgang|last2=Khoromskij|first2=Boris&nbsp;N.|last3=Sauter|first3=Stefan|date=2002|title=On H<sup>2</sup>-matrices|journal=Lectures on Applied Mathematics|pages=9&ndash;29|url=https://link.springer.com/chapter/10.1007/978-3-642-59709-1_2|doi=10.1007/978-3-642-59709-1_2}}</ref>
<ref name="BO10b">{{cite book|last=Börm|first=Steffen|date=2010|title=Efficient Numerical Methods for Non-local Operators: H<sup>2</sup>-Matrix Compression, Algorithms and Analysis|publisher=EMS Tracts in Mathematics|url=http://www.ems-ph.org/books/book.php?proj_nr=125}}</ref>
replace the general low-rank structure of the blocks by a hierarchical representation closely related to the