Content deleted Content added
Nandushines (talk | contribs) m Rename Pratt to Patt |
No edit summary |
||
Line 12:
[[ATI Technologies]] (now [[Advanced Micro Devices|AMD]]) released a competing product slightly later on May 14, 2007, the [[TeraScale (microarchitecture)#TeraScale 1|TeraScale 1]]-based ''"R600"'' GPU chip.
As access time of all the widespread [[random-access memory|RAM]] types (e.g. [[DDR SDRAM]], [[GDDR SDRAM]], [[XDR DRAM]], etc.) is still relatively
SIMT is intended to limit [[instruction fetching]] overhead,<ref>{{cite conference |first1=Sean |last1=Rul |first2=Hans |last2=Vandierendonck |first3=Joris |last3=D’Haene |first4=Koen |last4=De Bosschere |title=An experimental study on performance portability of OpenCL kernels |year=2010 |conference=Symp. Application Accelerators in High Performance Computing (SAAHPC)}}</ref> i.e. the latency that comes with memory access, and is used in modern GPUs (such as those of [[Nvidia]] and [[AMD]]) in combination with 'latency hiding' to enable high-performance execution despite considerable latency in memory-access operations. This is where the processor is oversubscribed with computation tasks, and is able to quickly switch between tasks when it would otherwise have to wait on memory. This strategy is comparable to [[Multithreading (computer architecture)|multithreading in CPUs]] (not to be confused with [[Multi-core processor|multi-core]]).<ref>{{cite web |url=http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2011-04-14/12-advanced_topics_in_cuda.pdf |title=Advanced Topics in CUDA |date=2011 |website=cc.gatech.edu |accessdate=2014-08-28}}</ref>
|