Content deleted Content added
rm unsourced claim from lead; he was designing computers, not using desk calculators |
|||
Line 88:
: <math> M \times \,^{\prime\prime} 0 \; 1 \; 0 \; 0 \mbox{-1} \; 1 \mbox{-1} \; 0 \,^{\prime\prime} = M \times (2^6 - 2^3 + 2^2 - 2^1) = M \times 58. </math>
Booth's algorithm follows this old scheme by performing an addition when it encounters the first digit of a block of ones (0 1) and a subtraction when it encounters the end of the block (1 0). This works for a negative multiplier as well. When the ones in a multiplier are grouped into long blocks, Booth's algorithm vamsi
performs fewer additions and subtractions than the normal multiplication algorithm. == See also ==
|