Content deleted Content added
Undid revision 818752750 by Special:Contributions/2600:1011:B12E:74A7:88D0:47BB:7A65:6CC9 rvv |
|||
Line 48:
* <math>\varphi (\gamma )=\omega ^{\gamma }</math>
* <math>\varphi (z,s,\gamma )=\varphi (s,\gamma )</math>
* if <math>\beta >0</math>, then <math>\varphi (s,\beta ,z,\gamma )</math> denotes the <math>(1+\gamma [I think this is wrong because 1+\gamma=\gamma] )</math>-th common fixed point of the functions <math>\xi \mapsto \varphi (s,\delta ,\xi ,z)</math> for each <math>\delta <\beta</math>
For example, <math>\varphi(1,0,\gamma)</math> is the <math>(1+\gamma)</math>-th fixed point of the functions <math>\xi\mapsto\varphi(\xi,0)</math>, namely <math>\Gamma_\gamma</math>; then <math>\varphi(1,1,\gamma)</math> enumerates the fixed points of that function, i.e., of the <math>\xi\mapsto\Gamma_\xi</math> function; and <math>\varphi(2,0,\gamma)</math> enumerates the fixed points of all the <math>\xi\mapsto\varphi(1,\xi,0)</math>. Each instance of the generalized Veblen functions is continuous in the ''last nonzero'' variable (i.e., if one variable is made to vary and all later variables are kept constantly equal to zero).
|