Content deleted Content added
KolbertBot (talk | contribs) m Bot: HTTP→HTTPS (v475) |
grammar tweak (compute efficiently -> efficiently compute) |
||
Line 1:
The '''forward–backward algorithm''' is an [[Statistical_inference | inference]] [[algorithm]] for [[hidden Markov model]]s which computes the [[posterior probability|posterior]] [[marginal probability|marginals]] of all hidden state variables given a sequence of observations/emissions <math>o_{1:t}:= o_1,\dots,o_t</math>, i.e. it computes, for all hidden state variables <math>X_k \in \{X_1, \dots, X_t\}</math>, the distribution <math>P(X_k\ |\ o_{1:t})</math>. This inference task is usually called ''smoothing''. The algorithm makes use of the principle of [[dynamic programming]] to
The term ''forward–backward algorithm'' is also used to refer to any algorithm belonging to the general class of algorithms that operate on sequence models in a forward–backward manner. In this sense, the descriptions in the remainder of this article refer but to one specific instance of this class.
|