Content deleted Content added
m Replace magic links with templates per local RfC and MediaWiki RfC |
→Applications: I have been a bit more Tags: Mobile edit Mobile web edit |
||
Line 10:
==Applications==
The inverse demand function can be used to derive the total and marginal revenue functions. Total revenue equals price, P, times quantity, Q, or TR = P×Q. Multiply the inverse demand function by Q to derive the total revenue function: TR = (120 - .5Q) × Q = 120Q - 0.5Q². The marginal revenue function is the
For example, assume cost, C, equals 420 + 60Q + Q<sup>2</sup>. then MC = 60 + 2Q.<ref>Perloff, Microeconomics, Theory & Applications with Calculus (Pearson 2008) 240.{{ISBN|0-321-27794-5}}</ref> Equating MR to MC and solving for Q gives Q = 20. So 20 is the profit maximizing quantity: to find the profit-maximizing price simply plug the value of Q into the inverse demand equation and solve for P.
|