Skorokhod's embedding theorem: Difference between revisions

Content deleted Content added
Line 19:
Then there is a sequence of stopping times ''&tau;''<sub>1</sub> &le; ''&tau;''<sub>2</sub> &le; ... such that the <math>W_{\tau_{n}}</math> have the same joint distributions as the partial sums ''S''<sub>''n''</sub> and ''&tau;''<sub>1</sub>, ''&tau;''<sub>2</sub> &minus; ''&tau;''<sub>1</sub>, ''&tau;''<sub>3</sub> &minus; ''&tau;''<sub>2</sub>, ... are independent and identically distributed random variables satisfying
 
:<math>\mathbb{E}[\tau_{n} - \tau_{n - 1}] = \mathbb{E}[X_{1n}^{2}]</math>
 
and
 
:<math>\mathbb{E}[(\tau_{n} - \tau_{n - 1})^{2}] \leq 4 \mathbb{E}[X_{1n}^{4}].</math>
 
==References==