Test functions for optimization: Difference between revisions

Content deleted Content added
m Spell out American postal abbreviations (Florida) using AWB
Undid revision 830957101 - postal abbreviations in references are acceptable if an article chooses to use them.
Line 14:
 
==Test functions for single-objective optimization==
 
{| class="wikitable" style="text-align:center"
|-
Line 32 ⟶ 33:
||<math>-5\le x,y \le 5</math>
|-
| Sphere function
|| [[File:Sphere function in 3D.pdf|200px|Sphere function for n=2]]
|| <math>f(\boldsymbol{x}) = \sum_{i=1}^{n} x_{i}^{2}</math>
|| <math>f(x_{1}, \dots, x_{n}) = f(0, \dots, 0) = 0</math>
|| <math>-\infty \le x_{i} \le \infty</math>, <math>1 \le i \le n</math>
|-
| [[Rosenbrock function]]
|| [[File:Rosenbrock's function in 3D.pdf|200px|Rosenbrock's function for n=2]]
|| <math>f(\boldsymbol{x}) = \sum_{i=1}^{n-1} \left[ 100 \left(x_{i+1} - x_{i}^{2}\right)^{2} + \left(1 - x_{i}\right)^{2}\right]</math>
|| <math>\text{Min} =
\begin{cases}
Line 48 ⟶ 49:
\end{cases}
</math>
|| <math>-\infty \le x_{i} \le \infty</math>, <math>1 \le i \le n</math>
|-
| [[Beale function]]
|| [[File:Beale's function.pdf|200px|Beale's function]]
|| <math>f(x,y) = \left( 1.5 - x + xy \right)^{2} + \left( 2.25 - x + xy^{2}\right)^{2}</math>
<math>+ \left(2.625 - x+ xy^{3}\right)^{2}</math>
|| <math>f(3, 0.5) = 0</math>
|| <math>-4.5 \le x,y \le 4.5</math>
|-
| [[Goldstein–Price function]]
|| [[File:Goldstein Price function.pdf|200px|Goldstein–Price function]]
|| <math>f(x,y) = \left[1+\left(x+y+1\right)^{2}\left(19-14x+3x^{2}-14y+6xy+3y^{2}\right)\right]</math>
<math>\left[30+\left(2x-3y\right)^{2}\left(18-32x+12x^{2}+48y-36xy+27y^{2}\right)\right]</math>
|| <math>f(0, -1) = 3</math>
Line 135 ⟶ 136:
| [[Hölder table function]]
|| [[File:Holder table function.pdf|200px|Holder table function]]
|| <math>f(x,y) = - \left|\sin x \cos y \exp \left(\left|1 - \frac{\sqrt{x^{2} + y^{2}}}{\pi} \right|\right)\right|</math>
|| <math>\text{Min} =
\begin{cases}
Line 143 ⟶ 144:
f\left(-8.05502,-9.66459\right) & = -19.2085
\end{cases}
</math>
|| <math>-10\le x,y \le 10</math>
|-
Line 161 ⟶ 162:
|| [[File:Schaffer function 4.pdf|200px|Schaffer function N.4]]
|| <math>f(x,y) = 0.5 + \frac{\cos^{2}\left[\sin \left( \left|x^{2} - y^{2}\right|\right)\right] - 0.5}{\left[1 + 0.001\left(x^{2} + y^{2}\right) \right]^{2}}</math>
|| <math>f(0,1.25313) = 0.292579</math>
|| <math>-100\le x,y \le 100</math>
|-
Line 172 ⟶ 173:
 
==Test functions for constrained optimization==
 
{| class="wikitable" style="text-align:center"
|-
Line 206 ⟶ 208:
|| <math>-2.25\le x \le 2.5</math>, <math>-2.5\le y \le 1.75</math>
|-
| [[Simionescu function]]<ref>{{cite book|last=Simionescu|first=P.A.|title=Computer Aided Graphing and Simulation Tools for AutoCAD Users|year=2014|publisher=CRC Press|___location=Boca Raton, FloridaFL|isbn=978-1-4822-5290-3|edition=1st}}</ref>
|| [[File:Simionescu's function.PNG|200px|Simionescu function]]
|| <math>f(x,y) = 0.1xy</math>,
Line 216 ⟶ 218:
 
==Test functions for multi-objective optimization==
 
{{explain|reason=What does it mean to minimize two objective functions?|date=September 2016}}
 
Line 480 ⟶ 483:
 
==References==
 
<references/>