Multidimensional discrete convolution: Difference between revisions

Content deleted Content added
m Filtering on a Helix: Journal cites, Added 1 doi to a journal cite
Line 112:
This conclusion can then be extended to the convolution of two separable ''M''-dimensional signals as follows:
 
<math>x(n_1,n_2,...,n_M)* \overset{M}{\cdots} *h(n_1,n_2,...,n_M)=\bigg[x(n_1)*h(n_2n_1)\bigg]\bigg[x(n_2)*h(n_2)\bigg]...\bigg[x(n_M)*h(n_M)\bigg]</math>
 
So, when the two signals are separable, the multidimensional convolution can be computed by computing <math>n_M</math> one-dimensional convolutions.