Content deleted Content added
Added free to read link in citations with OAbot #oabot |
|||
Line 48:
==Properties and algorithms==
The objective function in a linear-fractional problem is both quasiconcave and [[quasiconvex function|quasiconvex]] (hence quasilinear) with a [[monotonicity|monotone]] property, [[pseudoconvex function|pseudoconvexity]], which is a stronger property than [[quasiconvex function|quasiconvexity]]. A linear-fractional objective function is both pseudoconvex and pseudoconcave, hence [[pseudolinear function|pseudolinear]]. Since an LFP can be transformed to an LP, it can be solved using any LP solution method, such as the [[simplex algorithm]] (of [[George B. Dantzig]]),<ref>
Chapter five: {{cite book| last=Craven|first=B. D.|title=Fractional programming|series=Sigma Series in Applied Mathematics|volume=4|publisher=Heldermann Verlag|___location=Berlin|year=1988|pages=145|isbn=3-88538-404-3 |mr=949209|ref=harv}}</ref><ref>{{cite journal| last1=Kruk | first1=Serge|last2=Wolkowicz|first2=Henry|title=Pseudolinear programming |journal=[[SIAM Review]]|volume=41 |year=1999 |issue=4 |pages=795–805 |mr=1723002|jstor=2653207|doi=10.1137/S0036144598335259|ref=harv|citeseerx=10.1.1.53.7355}}
</ref><ref>{{cite journal | last1=Mathis|first1=Frank H.|last2=Mathis|first2=Lenora Jane|title=A nonlinear programming algorithm for hospital management |journal=[[SIAM Review]]|volume=37 |year=1995 |issue=2 |pages=230–234|mr=1343214|jstor=2132826|doi=10.1137/1037046|ref=harv}}
</ref><ref>{{harvtxt|Murty|1983|loc=Chapter 3.20 (pp. 160–164) and pp. 168 and 179}}</ref> the [[criss-cross algorithm]],<ref>{{cite journal|title=The finite criss-cross method for hyperbolic programming|journal=European Journal of Operational Research|volume=114|issue=1|
|