Content deleted Content added
No edit summary |
m arxivify URL / redundant url using AWB |
||
Line 1:
A '''CUR matrix approximation''' is a set of three [[Matrix (mathematics)|matrices]] that, when multiplied together, closely approximate a given matrix.<ref name=mahoney>{{cite web|title=CUR matrix decompositions for improved data analysis|url=http://www.pnas.org/content/106/3/697.full|accessdate=26 June 2012|author=Michael W. Mahoney|author2=Petros Drineas}}</ref>
* There are methods to calculate it with lower asymptotic time complexity versus the SVD.
Line 13:
==Tensor==
Tensor-CURT decomposition<ref>{{cite arXiv|title=Relative Error Tensor Low Rank Approximation|eprint=1704.08246|
is a generalization of matrix-CUR decomposition. Formally, a CURT tensor approximation of a tensor ''A'' is three matrices and a (core-)tensor ''C'', ''R'', ''T'' and ''U'' such that ''C'' is made from columns of ''A'', ''R'' is made from rows of ''A'', ''T'' is made from tubes of ''A'' and that the product ''U(C,R,T)'' (where the <math>i,j,l</math>-th entry of it is <math>\sum_{i',j',l'}U_{i',j',l'}C_{i,i'}R_{j,j'}T_{l,l'} </math>) closely approximates ''A''. Usually the CURT is selected to be a [[Rank (linear algebra)|rank]]-''k'' approximation, which means that ''C'' contains ''k'' columns of ''A'', ''R'' contains ''k'' rows of ''A'', ''T'' contains tubes of ''A'' and ''U'' is a ''k''-by-''k''-by-''k'' (core-)tensor.
==See also==
|