Startup neutron source: Difference between revisions

Content deleted Content added
No edit summary
fix link
Line 17:
** [[Antimony|Sb]]-[[Beryllium|Be]] [[photoneutron]] source; antimony [[neutron activation|becomes radioactive]] in the reactor and its strong gamma emissions (1.7 MeV for <sup>124</sup>Sb) interact with [[beryllium-9]] by an (γ,n) reaction and provide [[photoneutron]]s. In a [[Pressurized water reactor|PWR reactor]] one neutron source rod contains 160 grams of antimony, and stay in the reactor for 5–7 years.<ref>{{cite book|url=https://books.google.com/books?id=SJOE00whg44C&pg=PA147&dq=neutron+startup+source&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&num=50&as_brr=3&cd=22#v=onepage&q=neutron%20startup%20source&f=false |title=The radiochemistry of nuclear power plants with light water reactors|author=Karl-Heinz Neeb|page=147|publisher=Walter de Gruyter|year=1997 |isbn=3-11-013242-7}}</ref> The sources are often constructed as an antimony rod surrounded by beryllium layer and clad in [[stainless steel]].<ref name="tpub">{{cite web|author=Integrated Publishing |url=http://www.tpub.com/content/doe/h1019v1/css/h1019v1_108.htm |title=Neutron Sources Summary |publisher=Tpub.com |date= |accessdate=2010-03-28}}</ref><ref>{{cite web|url=http://www.lib.ncsu.edu/specialcollections/digital/text/engineering/reactor/murray/MurNBabneutron040953.html |title=Memorandum from Raymond L. Murray to Dr. Clifford K. Beck |publisher=Lib.ncsu.edu |date= |accessdate=2010-03-28}}</ref> Antimony-beryllium [[alloy]] can be also used.
 
The chain reaction in the first critical reactor, [[Chicago_Pile-1|CP-1]], was initiated by a radium-beryllium neutron source ( https://en.wikipedia.org/wiki/Chicago_Pile-1). Similarly, in modern reactors (after startup), delayed neutron emission from fission products suffices to sustain the amplification reaction while yielding controllable growth times. (In comparison, a bomb is based on immediate neutrons and grows exponentially in nanoseconds.)
 
==References==