Content deleted Content added
Peterzlondon (talk | contribs) mNo edit summary |
Peterzlondon (talk | contribs) mNo edit summary |
||
Line 1:
{{User sandbox}}
<!-- EDIT BELOW THIS LINE -->
Dynamic Causal Modelling (DCM) is a method and software framework for specifying models of neural dynamics, estimating their parameters and comparing their evidence <ref name=":2">{{Cite journal|last=Friston|first=K.J.|last2=Harrison|first2=L.|last3=Penny|first3=W.|date=2003-08|title=Dynamic causal modelling|url=https://doi.org/10.1016/S1053-8119(03)00202-7|journal=NeuroImage|volume=19|issue=4|pages=1273–1302|doi=10.1016/s1053-8119(03)00202-7|issn=1053-8119}}</ref>. It enables testing hypotheses about the interaction of neural populations (effective connectivity) using functional neuroimaging data e.g., [[functional magnetic resonance imaging]] (fMRI), [[magnetoencephalography]] (MEG)
== Procedure ==
Line 41:
[[File:DCM for ERP and CMC.svg|thumb|Models of the cortical column used in EEG/MEG/LFP analysis. Self-connections on each population are present but not shown for clarity. Left: DCM for ERP. Right: Canonical Microcircuit (CMC). 1=spiny stellate cells (layer IV), 2=inhibitory interneurons, 3=(deep) pyramidal cells and 4=superficial pyramidal cells.]]
==== EEG / MEG
DCM for EEG and MEG data use more biologically detailed neural models than fMRI, as the higher temporal resolution of these measurement techniques provides access to richer neural dynamics. These can be classed into physiological models, which recapitulate neural circuity, and phenomenological models, which focus on reproducing particular data features. The physiological models can be further subdivided into two classes. [http://www.scholarpedia.org/article/Conductance-based_models Conductance-based models] derive from the equivalent circuit representation of the cell membrane developed by Hodgkin and Huxley in the 1950s<ref name=":5">{{Cite journal|last=Hodgkin|first=A. L.|last2=Huxley|first2=A. F.|date=1952-04-28|title=The components of membrane conductance in the giant axon ofLoligo|url=http://dx.doi.org/10.1113/jphysiol.1952.sp004718|journal=The Journal of Physiology|volume=116|issue=4|pages=473–496|doi=10.1113/jphysiol.1952.sp004718|issn=0022-3751}}</ref> . Convolution models were introduced by [[Wilson–Cowan model|Wilson & Cowan]]<ref>{{Cite journal|last=Wilson|first=H. R.|last2=Cowan|first2=J. D.|date=1973-09|title=A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue|url=http://dx.doi.org/10.1007/bf00288786|journal=Kybernetik|volume=13|issue=2|pages=55–80|doi=10.1007/bf00288786|issn=0340-1200}}</ref> and Freeman <ref>{{Cite journal|date=1975|title=Mass Action in the Nervous System|url=http://dx.doi.org/10.1016/c2009-0-03145-6|doi=10.1016/c2009-0-03145-6}}</ref> in the 1970s and involve a convolution of pre-synaptic input by a synaptic kernel function. The specific models used in DCM are as follows:
|