Content deleted Content added
No edit summary |
No edit summary |
||
Line 1:
The '''synthetic control method''' is a statistical method used to evaluate the effect of an intervention in [[comparative case study|comparative case studies]]. It involves the construction of a weighted combination of groups used as controls, to which the [[treatment group]] is compared. This comparison is used to estimate what would have happened to the treatment group if it had not received the treatment.
Unlike [[difference in differences]] approaches, this method can account for the effects of [[confounder]]s changing over time, by weighting the control group to better match the treatment group before the intervention.<ref name=he>{{cite journal|last1=Kreif|first1=Noémi|last2=Grieve|first2=Richard|last3=Hangartner|first3=Dominik|last4=Turner|first4=Alex James|last5=Nikolova|first5=Silviya|last6=Sutton|first6=Matt|title=Examination of the Synthetic Control Method for Evaluating Health Policies with Multiple Treated Units|journal=Health Economics|date=December 2016|volume=25|issue=12|pages=1514–1528|doi=10.1002/hec.3258}}</ref> Another advantage of the synthetic control method is that it allows researchers to systematically select comparison groups.<ref name=ajps>{{cite journal|last1=Abadie|first1=Alberto|last2=Diamond|first2=Alexis|last3=Hainmueller|first3=Jens|title=Comparative Politics and the Synthetic Control Method|journal=American Journal of Political Science|date=February 2015|volume=59|issue=2|pages=495–510|doi=10.1111/ajps.12116}}</ref> It has been applied to the fields of [[political science]],<ref name=ajps/> [[health policy]],<ref name=he/> [[criminology]],<ref>{{cite journal|last1=Saunders|first1=Jessica|last2=Lundberg|first2=Russell|last3=Braga|first3=Anthony A.|last4=Ridgeway|first4=Greg|last5=Miles|first5=Jeremy|title=A Synthetic Control Approach to Evaluating Place-Based Crime Interventions|journal=Journal of Quantitative Criminology|date=3 June 2014|volume=31|issue=3|pages=413–434|doi=10.1007/s10940-014-9226-5}}</ref
The synthetic control method combines elements from [[Matching (statistics)|matching]] and [[difference-in-difference]] techniques. Difference-in-difference methods are often-used policy evaluation tools that estimate the effect of an intervention at an aggregate level (e.g. state, country, age group etc.) by averaging over a set of unaffected units. Famous examples include studies of the employment effects of a raise in the [[Minimum wage in the United States|minimum wage]] in New Jersey fast food restaurants by comparing them to fast food restaurants just across the border in [[Philadelphia]] that were unaffected by a minimum wage raise,<ref name="CardKrueger">{{cite journal |last=Card |first=D. |authorlink=David Card |first2=A. |last2=Krueger |authorlink2=Alan Krueger |year=1994 |title=Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania |journal=[[American Economic Review]] |volume=84 |issue=4 |pages=772–793 |jstor=2118030 }}</ref> and studies that look at [[crime rates]] in southern cities to evaluate the impact of the [[Mariel boat lift]] on crime.<ref>{{cite journal |last=Card |first=D. |year=1990 |title=The Impact of the Mariel Boatlift on the Miami Labor Market |journal=[[Industrial and Labor Relations Review]] |volume=43 |issue=2 |pages=245–257 |doi=10.1177/001979399004300205 }}</ref> The control group in this specific scenario can be interpreted as a [[Weighted arithmetic mean|weighted average]], where some units effectively receive zero weight while others get an equal, non-zero weight.
|