Feedback linearization: Difference between revisions

Content deleted Content added
Plusk01 (talk | contribs)
Lie derivative: the d in the derivate shoud always be \mathrm{d} not \operatorname{d} to prevent the spacing
Line 26:
 
:<math>\begin{align}
\dot{y} = \frac{\operatornamemathrm{d}h(x)}{\operatornamemathrm{d}t} &=\frac{\operatornamemathrm{d}h(x)}{\operatornamemathrm{d}x}\dot{x}\\
&= \frac{\operatornamemathrm{d}h(x)}{\operatornamemathrm{d}x}f(x) + \frac{\operatornamemathrm{d}h(x)}{\operatornamemathrm{d}x}g(x)u
\end{align}</math>
 
Now we can define the Lie derivative of <math>h(x)</math> along <math>f(x)</math> as,
 
:<math>L_{f}h(x) = \frac{\operatornamemathrm{d}h(x)}{\operatornamemathrm{d}x}f(x),</math>
 
and similarly, the Lie derivative of <math>h(x)</math> along <math>g(x)</math> as,
 
:<math>L_{g}h(x) = \frac{\operatornamemathrm{d}h(x)}{\operatornamemathrm{d}x}g(x).</math>
 
With this new notation, we may express <math>\dot{y}</math> as,
Line 44:
Note that the notation of Lie derivatives is convenient when we take multiple derivatives with respect to either the same vector field, or a different one. For example,
 
:<math>L_{f}^{2}h(x) = L_{f}L_{f}h(x) = \frac{\operatornamemathrm{d}(L_{f}h(x))}{\operatornamemathrm{d}x}f(x),</math>
 
and
 
:<math>L_{g}L_{f}h(x) = \frac{\operatornamemathrm{d}(L_{f}h(x))}{\operatornamemathrm{d}x}g(x).</math>
 
=== Relative degree ===