Content deleted Content added
KolbertBot (talk | contribs) m Bot: HTTP→HTTPS (v481) |
m convert &infin to ∞ |
||
Line 4:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]s||{{CDD|node_1|3|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 14:
|bgcolor=#efdcc3|Edge figure||[[Triangle|{3}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-3 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||Self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 triangular honeycomb''' (or '''3,
== Geometry==
It has three [[Infinite-order triangular tiling]] {3,
{| class=wikitable width=640
Line 34:
== Related polytopes and honeycombs ==
It is a part of a sequence of regular honeycombs with [[Infinite-order triangular tiling]] [[cell (geometry)|cells]]: {3,
It is a part of a sequence of regular honeycombs with [[order-3 apeirogonal tiling]] [[vertex figures]]: {''p'',
It is a part of a sequence of self-dual regular honeycombs: {''p'',
{{-}}
Line 47:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]s||{{CDD|node_1|3|node|infin|node|4|node}}<BR>{{CDD|node_1|3|node|infin|node|4|node_h0}} = {{CDD|node_1|3|node|split1-ii|nodes}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 57:
|bgcolor=#efdcc3|Edge figure||[[square|{4}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-4 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 square honeycomb|{4,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-4 triangular honeycomb''' (or '''3,
It has four [[infinite-order triangular tiling]]s, {3,
{| class=wikitable width=480
Line 74:
|}
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {3,
{{-}}
Line 84:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|infin|node|5|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 94:
|bgcolor=#efdcc3|Edge figure||[[pentagon|{5}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-5 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 pentagonal honeycomb|{5,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 triangular honeycomb''' (or '''3,
{| class=wikitable width=480
Line 117:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|infin|node|6|node}}<BR>{{CDD|node_1|3|node|infin|node|6|node_h0}} = {{CDD|node_1|3|node|split1-ii|branch}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 127:
|bgcolor=#efdcc3|Edge figure||[[Hexagon|{6}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-6 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 hexagonal honeycomb|{6,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-6 triangular honeycomb''' (or '''3,
{| class=wikitable width=480
Line 149:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|infin|node|7|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 159:
|bgcolor=#efdcc3|Edge figure||[[Heptagon|{7}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-7 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 heptagonal honeycomb|{7,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-7 triangular honeycomb''' (or '''3,
{| class=wikitable
Line 181:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|infin|node|infin|node}}<BR>{{CDD|node_1|3|node|infin|node|infin|node_h0}} = {{CDD|node_1|3|node|split1-ii|branch|labelinfin}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 191:
|bgcolor=#efdcc3|Edge figure||[[Apeirogon|{∞}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Infinite-order apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 apeirogonal honeycomb|{∞,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[∞,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-infinite triangular honeycomb''' (or '''3,
{| class=wikitable width=480
Line 206:
|}
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {3,(
{{-}}
Line 216:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{4,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|4|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order square tiling|{4,
|-
|bgcolor=#efdcc3|Faces||[[Square|{4}]]
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[Order-3 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-4 triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[4,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 square honeycomb''' (or '''4,
The [[Schläfli symbol]] of the ''order-infinite-3 square honeycomb'' is {4,
{| class=wikitable
Line 248:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{5,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|5|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order pentagonal tiling|{5,
|-
|bgcolor=#efdcc3|Faces||[[Pentagon|{5}]]
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[heptagonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-5 triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[5,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 pentagonal honeycomb''' (or '''5,
The [[Schläfli symbol]] of the ''order-6-3 pentagonal honeycomb'' is {5,
{| class=wikitable
Line 279:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{6,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|6|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order hexagonal tiling|{6,
|-
|bgcolor=#efdcc3|Faces||[[Hexagon|{6}]]
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[order-3 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-6 triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[6,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 hexagonal honeycomb''' (or '''6,
The [[Schläfli symbol]] of the ''order-infinite-3 hexagonal honeycomb'' is {6,
{| class=wikitable
Line 312:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{7,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|7|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order heptagonal tiling|{7,
|-
|bgcolor=#efdcc3|Faces||[[Heptagon|{7}]]
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[order-3 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-7 triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[7,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 heptagonal honeycomb''' (or '''7,
The [[Schläfli symbol]] of the ''order-infinite-3 heptagonal honeycomb'' is {7,
{| class=wikitable
Line 345:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|infin|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Faces||[[Apeirogon]] {
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[infinite-order apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-infinite triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 apeirogonal honeycomb''' (or '''
The [[Schläfli symbol]] of the apeirogonal tiling honeycomb is {
The "ideal surface" projection below is a plane-at-infinity, in the Poincare half-space model of H3. It shows a [[Apollonian gasket]] pattern of circles inside a largest circle.
Line 378:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{4,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|4|node|infin|node|4|node}}<BR>{{CDD|node_1|4|node|infin|node|4|node_h0}} = {{CDD|node_1|4|node|split1-ii|nodes}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order square tiling|{4,
|-
|bgcolor=#efdcc3|Faces||[[Square|{4}]]
Line 388:
|bgcolor=#efdcc3|Edge figure||[[Square|{4}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-4 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[4,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-4 square honeycomb''' (or '''4,
All vertices are ultra-ideal (existing beyond the ideal boundary) with four [[infinite-order square tiling]]s existing around each edge and with an [[order-4 apeirogonal tiling]] [[vertex figure]].
Line 405:
|}
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {4,
{{-}}
Line 415:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{5,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|5|node|infin|node|5|node}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order pentagonal tiling|{5,
|-
|bgcolor=#efdcc3|Faces||[[pentagon|{5}]]
Line 425:
|bgcolor=#efdcc3|Edge figure||[[pentagon|{5}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-5 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[5,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-5 pentagonal honeycomb''' (or '''5,
All vertices are ultra-ideal (existing beyond the ideal boundary) with five infinite-order pentagonal tilings existing around each edge and with an [[order-5 apeirogonal tiling]] [[vertex figure]].
Line 449:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{6,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|6|node|infin|node|6|node}}<BR>{{CDD|node_1|6|node|infin|node|6|node_h0}} = {{CDD|node_1|6|node|split1-ii|branch}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order hexagonal tiling|{6,
|-
|bgcolor=#efdcc3|Faces||[[hexagon|{6}]]
Line 459:
|bgcolor=#efdcc3|Edge figure||[[hexagon|{6}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-6 hexagonal tiling|{
|-
|bgcolor=#efdcc3|Dual||self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[6,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-6 hexagonal honeycomb''' (or '''6,
{| class=wikitable
Line 474:
|}
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {6,(
{{-}}
Line 484:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{7,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|7|node|infin|node|7|node}}
|-
|bgcolor=#efdcc3|Cells||[[order-5 heptagonal tiling|{7,
|-
|bgcolor=#efdcc3|Faces||[[heptagon|{7}]]
Line 494:
|bgcolor=#efdcc3|Edge figure||[[heptagon|{7}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-7 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[7,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-7 heptagonal honeycomb''' (or '''7,
{| class=wikitable
Line 558:
==External links==
* [https://www.youtube.com/watch?v=GRo_FQm2KRc Hyperbolic Catacombs Carousel: {3,
*[[John Baez]], ''Visual insights'': [http://blogs.ams.org/visualinsight/2014/08/01/733-honeycomb/ {7,3,3} Honeycomb] (2014/08/01) [http://blogs.ams.org/visualinsight/2014/08/14/733-honeycomb-meets-plane-at-infinity/ {7,3,3} Honeycomb Meets Plane at Infinity] (2014/08/14)
* [[Danny Calegari]], [http://lamington.wordpress.com/2014/03/04/kleinian-a-tool-for-visualizing-kleinian-groups/Kleinian Kleinian, a tool for visualizing Kleinian groups, Geometry and the Imagination] 4 March 2014. [http://math.uchicago.edu/~dannyc/papers/kleinian_mtf_Feb_2014.pdf]
|