Content deleted Content added
→Moduli of smoothness: fix per OTRS req |
mNo edit summary |
||
Line 8:
==Moduli of smoothness==
The modulus of smoothness of order <math>n</math> <ref>DeVore, Ronald A., Lorentz, George G., Constructive approximation, Springer-Verlag, 1993.</ref>
of a function <math>f\in C[a,b]</math> is the function <math>\omega_n:[0,\infty)\to\
▲of a function <math>f\in C[a,b]</math> is the function <math>\omega_n:[0,\infty)\to\mathbb{R}</math> defined by
:<math>\omega_n(t,f,[a,b])=\sup_{h\in[0,t]}\sup_{x\in[a,b-nh]} \left |\Delta_h^n(f,x) \right | \qquad \text{
and
:<math>\omega_n(t,f,[a,b])=\omega_n\left(\frac{b-a}{n},f,[a,b]\right)
where the [[finite difference]] (''n''-th order forward difference) is defined as
Line 24 ⟶ 23:
==Properties==
::<math>\omega_n(mt)\leq m^n\omega_n(t).</math>
::<math>\left \|f^{(r)} \right \|_{L_{\infty}[-1,1]}<+\infty.</math> :If <math>f\in W^r,</math> ::<math>\omega_r(t,f,[-1,1])\leq t^r \left \|f^{(r)} \right \|_{L_{\infty}[-1,1]}, t\geq 0,</math> :where <math>\|g(x)\|_{L_{\infty}[-1,1]}={\mathrm{ess} \sup}_{x\in [-1,1]}|g(x)|.</math> ==Applications==
Line 44 ⟶ 48:
For every natural number <math>n</math>, if <math>f</math> is <math>2\pi</math>-periodic continuous function, there exists a [[trigonometric polynomial]] <math>T_n</math> of degree <math>\le n</math> such that
:<math>\left |f(x)-T_n(x \right )|\leq c(k)\omega_k\left(\frac{1}{n},f\right),\quad x\in[0,2\pi],</math>
where the constant <math>c(k)</math> depends on <math>k\in\
==References==
|