Content deleted Content added
Bibcode Bot (talk | contribs) m Adding 0 arxiv eprint(s), 1 bibcode(s) and 0 doi(s). Did it miss something? Report bugs, errors, and suggestions at User talk:Bibcode Bot |
No edit summary |
||
Line 2:
{{for|use in ecology|Theoretical ecology}}
In mathematics, for example in the study of statistical properties of [[Graph (discrete mathematics)|graphs]],
One null model of utility in the study of [[complex networks]] is that proposed by Newman and Girvan,
The null model is the basic concept behind the definition of [[Modularity (networks)|modularity]], a function which evaluates the goodness of partitions of a graph into clusters. In particular, given a graph <math>G</math> and a specific community partition <math>\sigma:V(G)\rightarrow \{1,...,b\}</math> (an assignment of a community-index <math>\sigma(v)</math> (here taken as an integer from <math>1</math> to <math>b</math>) to each vertex <math>v\in V(G)</math> in the graph), the modularity measures the difference between the number of links from/to each pair of communities, from that expected in a graph that is completely random in all respects other than the set of degrees of each of the vertices (the [[degree sequence]]). In other words, the modularity contrasts the exhibited community structure in <math>G</math> with that of a null model, which in this case is the [[configuration model]] (the maximally random graph subject to a constraint on the degree of each vertex).
==See also==
|