Content deleted Content added
No edit summary |
|||
Line 2:
[[File:TriSquare36.svg|200px|thumb|Square triangular number 36 depicted as a triangular number and as a square number.]]
In [[mathematics]], a '''square triangular number''' (or '''triangular square number''') is a number which is both a [[triangular number]] and a [[square number|perfect square]]. There are [[Infinity|infinitely many]] square triangular numbers; the first few are:
==Explicit formulas==
Write {{math|''N''<sub>''k''</sub>}} for the
:<math>N_k = s_k^2 = \frac{t_k(t_k+1)}{2}.</math>
Define the ''triangular root'' of a triangular number {{math|''N'' {{=}} {{sfrac|''n''(''n'' + 1)|2}}}} to be {{mvar|n}}. From this definition and the quadratic formula,
:<math>n = \frac{\sqrt{8N + 1} - 1}{2}.</math>
Therefore, {{mvar|N}} is triangular ({{mvar|n}} is an integer) [[if and only if]] {{math|8''N'' + 1}} is square. Consequently, a square number {{math|''M''<sup>2</sup>}} is also triangular if and only if {{math|8''M''<sup>2</sup> + 1}} is square, that is, there are numbers {{mvar|x}} and {{mvar|y}} such that {{math|''x''<sup>2</sup> − 8''y''<sup>2</sup> {{=}} 1}}. This is an instance of the [[Pell equation]] with {{math|''n'' {{=}} 8}}. All Pell equations have the trivial solution {{math|''x'' {{=}} 1, ''y'' {{=}} 0}} for any {{mvar|n}}; this is called the zeroth solution, and indexed as {{math|(''x''<sub>0</sub>, ''y''<sub>0</sub>) {{=}} (1,0)}}. If {{math|(''x<sub>k</sub>'', ''y<sub>k</sub>'')}} denotes the {{mvar|k}}th nontrivial solution to any Pell equation for a particular {{mvar|n}}, it can be shown by the method of descent that
:<math>\begin{align}
x_{k+1} &= 2x_k x_1 - x_{k-1}, \\
y_{k+1} &= 2y_k x_1 - y_{k-1}.
\end{align}</math>
Hence there are an infinity of solutions to any Pell equation for which there is one non-trivial one, which holds whenever {{mvar|n}} is not a square. The first non-trivial solution when {{math|''n'' {{=}} 8}} is easy to find: it is (3,1). A solution {{math|(''x<sub>k</sub>'', ''y<sub>k</sub>'')}} to the Pell equation for {{math|''n'' {{=}} 8}} yields a square triangular number and its square and triangular roots as follows:
:<math>s_k = y_k , \quad t_k = \frac{x_k - 1}{2}, \quad N_k = y_k^2.</math>
Hence, the first square triangular number, derived from (3,1), is 1, and the next, derived from {{nowrap|6 × (3,1) − (1,0) {{=}} (17,6)}}, is 36.
The sequences {{math|''N''<sub>''k''</sub>}}, {{math|''s''<sub>''k''</sub>}} and {{math|''t''<sub>''k''</sub>}} are the [[OEIS]] sequences {{OEIS2C|id=A001110}}, {{OEIS2C|id=A001109}}, and {{OEIS2C|id=A001108}} respectively.
In 1778 [[Leonhard Euler]] determined the explicit formula<ref name=Dickson>
Line 19 ⟶ 27:
{{cite journal |last=Euler |first=Leonhard |authorlink=Leonhard Euler |year=1813 |title=Regula facilis problemata Diophantea per numeros integros expedite resolvendi (An easy rule for Diophantine problems which are to be resolved quickly by integral numbers) |journal=Mémoires de l'Académie des Sciences de St.-Pétersbourg |volume= 4 |pages=3–17 |url=http://math.dartmouth.edu/~euler/pages/E739.html |language=Latin |accessdate=2009-05-11 |quote=According to the records, it was presented to the St. Petersburg Academy on May 4, 1778.}}
</ref>{{Rp|12–13}}
:<math>N_k = \left( \frac{\left(3 + 2\sqrt{2}\right)^k - \left(3 - 2\sqrt{2}\right)^k}{4\sqrt{2}} \right)^2.
</math>
Other equivalent formulas (obtained by expanding this formula) that may be convenient include
: <math>\begin{align}
N_k &= \tfrac{1
&= \tfrac{1 &= \tfrac{1
\end{align}</math>
The corresponding explicit formulas for {{math|''s''<sub>''k''</sub>}} and {{math|''t''<sub>''k''</sub>}} are:<ref name=Euler />{{Rp|13}}
:<math>\begin{align}
s_k &= \frac{\left(3 + 2\sqrt{2}\right)^k - \left(3 - 2\sqrt{2}\right)^k}{4\sqrt{2}}, \\
t_k &= \frac{\left(3 + 2\sqrt{2}\right)^k + \left(3 - 2\sqrt{2}\right)^k - 2}{4}.
\end{align}</math>
==Pell's equation==
Line 35 ⟶ 45:
{{cite book | last1 = Barbeau | first1 = Edward | title = Pell's Equation | pages = 16–17 | url=https://books.google.com/books?id=FtoFImV5BKMC&pg=PA16 | accessdate = 2009-05-10 |series = Problem Books in Mathematics | publisher = Springer | ___location = New York | year = 2003 | isbn = 978-0-387-95529-2 }}
</ref>
Every triangular number is of the form {{math|{{sfrac|''t''(''t'' + 1)|2}}}}. Therefore we seek integers {{mvar|t}}, {{mvar|s}} such that
:<math>\frac{t(t+1)}{2} = s^2.</math>
:<math>\left(2t+1\right)^2=8s^2+1,</math>
and then letting {{math|''x'' {{=}} 2''t'' + 1}} and {{math|''y'' {{=}} 2''s''}}, we get the [[Diophantine equation]]
:<math>x^2 - 2y^2 =1,</math>
which is an instance of [[Pell's equation]]. This particular equation is solved by the [[Pell number]]s {{math|''P''<sub>''k''</sub>}} as<ref>
{{cite book |last1=Hardy |first1=G. H. |authorlink1=G. H. Hardy |last2=Wright |first2=E. M. |authorlink2 = E. M. Wright |title=An Introduction to the Theory of Numbers |edition=5th |year=1979 |publisher=Oxford University Press |isbn=0-19-853171-0 |page=210|quote= Theorem 244 }}
</ref>
Line 63 ⟶ 74:
There are [[recurrence relation]]s for the square triangular numbers, as well as for the sides of the square and triangle involved. We have<ref>{{MathWorld|title=Square Triangular Number|urlname=SquareTriangularNumber}}</ref>{{Rp|(12)}}
:<math>\begin{align}
N_k &= 34N_{k-1} - N_{k-2} + 2,& \text{ \end{align}</math>
We have<ref name=Dickson /><ref name=Euler />{{Rp|13}}
:<math>\begin{align}
s_k &= 6s_{k-1} - s_{k-2},& \text{ t_k &= 6t_{k-1} - t_{k-2} + 2,& \text{with }t_0 &= 0\text{ and }t_1 = 1.
\end{align}</math>
==Other characterizations==
All square triangular numbers have the form {{math|''b''<sup>2</sup>''c''<sup>2</sup>}}, where {{math|{{sfrac|''b''
{{cite book | last1 = Ball | first1 = W. W. Rouse |authorlink1 = W. W. Rouse Ball | last2 = Coxeter | first2 = H. S. M. |authorlink2 = Harold Scott MacDonald Coxeter | title = Mathematical Recreations and Essays | publisher = Dover Publications | ___location = New York | year = 1987 | page = 59| isbn = 978-0-486-25357-2 }}
</ref>
A. V. Sylwester gave a short proof that there are an infinity of square triangular numbers, to wit:<ref name=Sylwester>
{{cite journal |last=Pietenpol |first=J. L. |
</ref>
If the {{mvar|n}}th triangular number {{math|{{sfrac|''n''(''n'' + 1)
:<math>\frac{\bigl( 4n(n+1) \bigr) \bigl( 4n(n+1)+1 \bigr)}{2} =
We know this result has to be a square, because it is a product of three squares:
The triangular roots
:49 = 7 :288 = 17 :1681 = 41 In each case, the two square roots involved multiply to give Additionally:
:<math>N_k - N_{k-1}=s_{2k-1};</math>
{{nowrap|1=36 − 1 = 35}}, {{nowrap|1=1225 − 36 = 1189}}, and {{nowrap|1=41616 − 1225 = 40391}}. In other words, the difference between two consecutive square triangular numbers is the square root of another square triangular number.{{citation needed|date=December 2014}}
The generating function for the square triangular numbers is:<ref>
{{cite web |first=Simon |last=Plouffe |authorlink=Simon Plouffe |title=1031 Generating Functions |url=http://www.lacim.uqam.ca/%7Eplouffe/articles/FonctionsGeneratrices.pdf |publisher=University of Quebec, Laboratoire de combinatoire et d'informatique mathématique |page=A.129 |format=PDF |date=August 1992 |accessdate=2009-05-11 }}
</ref>
:<math>\frac{1+z}{(1-z)\left(z^2 - 34z + 1\right)} = 1 + 36z + 1225 z^2 + \cdots
==Numerical data==
As
:{| class="wikitable" border="1" style="text-align:right"
|-
! {{mvar|k}}
! {{math|''N<
! {{math|''s<
! {{math|''t<
! {{math|{{sfrac|''t<sub>k</sub>''|''s<sub>k</sub>''}}}}
! {{math|{{sfrac|''N<sub>k</sub>''|''N''<sub>''k'' − 1</sub>}}}}
|-
|0
|0
|0
|0
|align=left{{N/A|}}
|align=left{{N/A|}}
|-
|1
|1
|1
|1
|align=left|1
|align=left{{N/A|}}
|-
|2
|36
|6
|8
|
|align=left|36
|-
|3
|{{val|1225|fmt=gaps}}
|35
|49
|align=left|1.4
|
|-
|4
|{{val|41616}}
|
|
|
|
|-
|5
|{{val|1413721}}
|{{val|1189|fmt=gaps}}
|{{val|1681|fmt=gaps}}
|
|
|-
|6
|{{val|48024900}}
|{{val|6930|fmt=gaps}}
|{{val|9800|fmt=gaps}}
|
|
|-
|7
|{{val|1631432881}}
|{{val|40391}}
|{{val|57121}}
|
|
|-
|8
|{{val|55420693056}}
|{{val|235416}}
|{{val|332928}}
|
|
|-
|9
|{{val|1882672131025}}
|{{val|1372105}}
|{{val|1940449}}
|
|
|-
|10
|{{val|63955431761796}}
|{{val|7997214}}
|{{val|11309768}}
|
|
|-
|11
|{{val|2172602007770041}}
|{{val|46611179}}
|{{val|65918161}}
|
|
|}<!-- The table was generated in 23-jul-2016 using a Python script available at http://pastebin.com/sWyesrR8 -->
==See also==
*[[Cannonball problem]], on numbers that are simultaneously square and square pyramidal
*[[Sixth power]], numbers that are simultaneously square and cubical
|