Content deleted Content added
→Implementations: It's most natural to say it this way |
→Octuple-precision examples: Add examples similar to the pages for other IEEE 754 encodings |
||
Line 48:
of the floating-point value. This includes the sign, (biased) exponent, and significand.
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
7fff f000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
ffff f000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001<sub>16</sub> = 2<sup>−262142</sup> × 2<sup>−236</sup> = 2<sup>−262378</sup>
≈ 2.24800708647703657297018614776265182597360918266100276294348974547709294462 × 2<sup>−78984</sup>
(smallest positive subnormal number)
0000 0fff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff<sub>16</sub>
= 2<sup>−262142</sup> × (1 − 2<sup>−236</sup>)
≈ 2.4824279514643497882993282229138717236776877060796468692709532979137875392 × 2<sup>−78913</sup>
(largest subnormal number)
0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<sub>16</sub>
= 2<sup>−262142</sup>
≈ 2.48242795146434978829932822291387172367768770607964686927095329791378756168 × 2<sup>−78913</sup>
(smallest positive normal number)
7fff efff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff<sub>16</sub>
= 2<sup>262143</sup> × (2 − 2<sup>−236</sup>)
≈ 1.61132571748576047361957211845200501064402387454966951747637125049607182699 × 2<sup>78913</sup>
(largest normal number)
3fff efff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff<sub>16</sub>
= 1 − 2<sup>−237</sup>
≈ 0.999999999999999999999999999999999999999999999999999999999999999999999995472
(largest number less than one)
3fff f000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<sub>16</sub>
= 1 (one)
3fff f000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001<sub>16</sub>
= 1 + 2<sup>−236</sup>
≈ 1.00000000000000000000000000000000000000000000000000000000000000000000000906
(smallest number larger than one)
By default, 1/3 rounds down like [[double precision]], because of the odd number of bits in the significand.
|