Content deleted Content added
Default007 (talk | contribs) relation with the PSF |
No edit summary |
||
Line 1:
[[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]][[Image:Kikia.JPG]]
The '''Optical Transfer Function''' (OTF) describes the spatial (angular) variation as a function of [[spatial frequency|spatial (angular) frequency]]. When the image is projected onto a flat plane, such as photographic film or a solid state detector, spatial frequency is the preferred ___domain, but when the image is referred to the lens alone, angular frequency is preferred. OTF may be broken down into the magnitude and phase components as follows:▼
▲The \'\'\'Optical Transfer Function\'\'\' (OTF) describes the spatial (angular) variation as a function of [[spatial frequency|spatial (angular) frequency]]. When the image is projected onto a flat plane, such as photographic film or a solid state detector, spatial frequency is the preferred ___domain, but when the image is referred to the lens alone, angular frequency is preferred. OTF may be broken down into the magnitude and phase components as follows:
:<math>\\mathbf{OTF(\\xi,\\eta)}=\\mathbf{MTF(\\xi,\\eta)}\\cdot\\mathbf{PTF(\\xi,\\eta)} </math>
where
:<math>\\mathbf{MTF(\\xi,\\eta)} = | \\mathbf{OTF(\\xi,\\eta)} | </math>
:<math>\\mathbf{PTF(\\xi,\\eta)} = e^{-i 2\\cdot\\pi\\cdot\\lambda (\\xi,\\eta)} </math>
:and <math>(\\xi,\\eta)</math> are spatial frequency in the x- and y-plane, respectively.
The OTF accounts for [[aberration in optical systems|aberration]], which the limiting frequency expression above does not. The magnitude is known as the \'\'\'Modulation Transfer Function (MTF)\'\'\' and the phase portion is known as the \'\'\'Phase Transfer Function (PTF)\'\'\'.
In imaging systems, the phase component is typically not captured by the sensor. Thus, the important measure with respect to imaging systems is the MTF.
|