Computer grafica 3D: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica |
Aggiunti collegamenti mancanti ad altre voci |
||
Riga 9:
Oggetti tridimensionali semplici possono essere rappresentati con equazioni operanti su un [[sistema di riferimento cartesiano]] [[Sistema di riferimento tridimensionale|tridimensionale]]: per esempio, l'equazione x²+y²+z²=r² è perfetta per una sfera di raggio ''r''. Anche se equazioni così semplici possono sembrare limitative, l'insieme degli oggetti realizzabili viene ampliato con una tecnica chiamata [[CSG (grafica)|geometria solida costruttiva]] (CSG, ''constructive solid geometry''), la quale combina oggetti solidi (come cubi, sfere, cilindri, ecc.) per formare oggetti più complessi attraverso le [[algebra di Boole|operazioni booleane]] (unione, sottrazione e intersezione): un tubo può ad esempio essere rappresentato come la differenza tra due cilindri aventi diametro differente.
Queste equazioni non sono tuttavia sufficienti a descrivere con accuratezza le forme complesse che costituiscono la gran parte del mondo reale, per cui non è di utilizzo comune. Per modellare [[Superficie di Bézier|superfici curve]] in modo arbitrario si possono usare le ''patch'', ovvero l'estensione delle ''[[spline]]'', che approssimano curve continue, alle tre dimensioni. Le ''patch'' più comunemente usate sono in pratica basate su ''spline'' [[NURBS]].
L'impiego di equazioni matematiche pure come queste richiede l'utilizzo di una gran quantità di potenza di calcolo, e non sono quindi pratiche per le applicazioni in tempo reale come videogiochi e simulazioni. Una tecnica più efficiente, e tuttora la più diffusa e flessibile è il poly-modelling o modellazione poligonale. Questa permette un maggiore livello di dettaglio a spese però della maggiore quantità di informazioni necessaria a memorizzare l'oggetto risultante, chiamato [[Mesh poligonale|modello poligonale]].
Un modello poligonale e "sfaccettato" come una scultura grezza può essere comunque raffinato con [[algoritmo|algoritmi]] per rappresentare superfici curve: questa tecnica è chiamata "[[superfici di suddivisione]]". Il modello viene raffinato con un processo di [[interpolazione]] iterativa rendendolo sempre più denso di poligoni, che approssimeranno meglio curve ideali, derivate matematicamente dai vari vertici del modello.
Riga 30:
Gli algoritmi di ''rendering'' si dividono in due categorie: ''[[scanline rendering|scanline renderers]]'' e ''[[ray tracing|ray tracers]]''. I primi operano oggetto per oggetto, disegnando direttamente su schermo ogni poligono costituente il modello 3d; essi richiedono quindi che tutti gli oggetti (anche quelli modellati con curve continue) siano costruiti come suddivisi in poligoni. I secondi operano pixel per pixel, tracciando un raggio visuale immaginario dal punto di vista all'interno della scena, e determinando il colore del pixel dalle intersezioni con gli oggetti.
Una delle funzioni principali di un ''renderer'' è la [[determinazione della
Un'immagine perfettamente nitida, con [[profondità di campo]] infinita non è affatto fotorealistica. L'occhio umano è abituato alle imperfezioni come il ''[[lens flare]]'' (il riflesso sulla lente), la limitatezza della profondità di campo e il ''[[motion blur]]'' ("effetto movimento") presenti nelle fotografie e nei film.
|