Content deleted Content added
Sidebar template Correlation and covariance. |
|||
Line 42:
==Uncorrelatedness==
Two random vectors <math>\mathbf{X}=(X_1,
:<math>\operatorname{E}[\mathbf{X} \mathbf{Y}^{\rm T}] = \operatorname{E}[\mathbf{X}]\operatorname{E}[\mathbf{Y}]^{\rm T}.</math>
They are uncorrelated if and only if their covariance <math>\operatorname{K}_{\mathbf{X}\mathbf{Y}}</math> matrix is zero.
Line 50:
:<math>\operatorname{E}[\mathbf{Z} \mathbf{W}^{\rm H}] = \operatorname{E}[\mathbf{Z}]\operatorname{E}[\mathbf{W}]^{\rm H}</math>
and
:<math>\operatorname{E}[\mathbf{Z} \mathbf{W}^{\rm T}] = \operatorname{E}[\mathbf{Z}]\operatorname{E}[\mathbf{W}]^{\rm T}.</math>
==Properties==
|