Cross-correlation matrix: Difference between revisions

Content deleted Content added
Sidebar template Correlation and covariance.
Line 42:
 
==Uncorrelatedness==
Two random vectors <math>\mathbf{X}=(X_1,...\ldots,X_m)^{\rm T} </math> and <math>\mathbf{Y}=(Y_1,...\ldots,Y_n)^{\rm T} </math> are called '''uncorrelated''' if
:<math>\operatorname{E}[\mathbf{X} \mathbf{Y}^{\rm T}] = \operatorname{E}[\mathbf{X}]\operatorname{E}[\mathbf{Y}]^{\rm T}.</math>.
 
They are uncorrelated if and only if their covariance <math>\operatorname{K}_{\mathbf{X}\mathbf{Y}}</math> matrix is zero.
Line 50:
:<math>\operatorname{E}[\mathbf{Z} \mathbf{W}^{\rm H}] = \operatorname{E}[\mathbf{Z}]\operatorname{E}[\mathbf{W}]^{\rm H}</math>
and
:<math>\operatorname{E}[\mathbf{Z} \mathbf{W}^{\rm T}] = \operatorname{E}[\mathbf{Z}]\operatorname{E}[\mathbf{W}]^{\rm T}.</math>.
 
==Properties==