Content deleted Content added
m Michael Hardy moved page Gilbert-Varshamov bound for linear codes to Gilbert–Varshamov bound for linear codes: WP:MOS |
slightly better format in an aligned display |
||
Line 28:
:<math>
\begin{align}
P & = \Pr_{\text{random }G} (\text{linear code generated by } G\text{ has distance} < d) \\[6pt]
& = \Pr_{\text{random }G} (\text{there exists a non-zero codeword } y \text{ in a linear code generated by }G\text{ such that } \operatorname{wt}(y) < d) \\[6pt]
&= \Pr_{\text{random }G} \left (\text{there exists } 0 \neq m \in \mathbb{F}_q^k \text{ such that } \operatorname{wt}(mG) < d \right )
\end{align}
Line 52:
:<math>\Pr_{\text{random }G} (mG = y) = q^{-n}</math>
Let <math>\
: <math> P \leqslant q^k W = q^k \left ( \frac{\
By choosing <math>k = (1-H_q(\delta)-\varepsilon)n</math>, the above inequality becomes
|