Content deleted Content added
→References: ISBN |
math markup; minor cleanup |
||
Line 5:
:<math>\operatorname{logit}(p_i)=\ln\left(\frac{p_i}{1-p_i}\right) = \alpha + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i},</math>
:<math>i = 1, \dots, n,\,\!</math>
where
:<math>p_i = \Pr(Y_i = 1).\,\!</math>
The logarithm of the [[odds]] (probability divided by one minus the probability) of the outcome is modelled as a linear function of the explanatory variables, ''X<
:<math>p_i = \Pr(Y_i = 1|X) = \frac{e^{\alpha + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}}}{1+e^{\alpha + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}}}.</math>
The interpretation of the
The parameters
Extensions of the model exist to cope with multi-category dependent variables and ordinal dependent variables.
|