Content deleted Content added
No edit summary |
No edit summary |
||
Line 83:
The Adams–Moulton methods with ''s'' = 0, 1, 2, 3, 4 are ({{harvnb|Hairer|Nørsett|Wanner|1993|loc=§III.1}}; {{harvnb|Quarteroni|Sacco|Saleri|2000}}):
:<math> y_n
:<math> y_{n+1}
: <math> \begin{align}
▲y_n &= y_{n-1} + h f(t_n???,y_n???) , \qquad\text{(This is the backward Euler method)}\\
▲y_{n+1} &= y_n + \frac{1}{2} h \left( f(t_{n+1},y_{n+1}) + f(t_n,y_n) \right) , \qquad\text{(This is the trapezoidal rule)}\\
y_{n+2} &= y_{n+1} + h \left( \frac{5}{12} f(t_{n+2},y_{n+2}) + \frac{2}{3} f(t_{n+1},y_{n+1}) - \frac{1}{12} f(t_n,y_n) \right) , \\
y_{n+3} &= y_{n+2} + h \left( \frac{9}{24} f(t_{n+3},y_{n+3}) + \frac{19}{24} f(t_{n+2},y_{n+2}) - \frac{5}{24} f(t_{n+1},y_{n+1}) + \frac{1}{24} f(t_n,y_n) \right) , \\
y_{n+4} &= y_{n+3} + h \left( \frac{251}{720} f(t_{n+4
\end{align} </math>
|