Content deleted Content added
Citation bot (talk | contribs) m Alter: template type, title, isbn, chapter. Add: issue, isbn, doi. Removed parameters. Formatted dashes. | You can use this bot yourself. Report bugs here. | User-activated. |
|||
Line 41:
Let ''u''(''n'') be a sequence over an alphabet Σ and suppose that there is an [[injective function]] β from Σ to the [[finite field]] '''F'''<sub>''q''</sub>, where ''q'' = ''p''<sup>''n''</sup> for some prime ''p''. The associated [[formal power series]] is
:<math> \sum_{i \geq 0} \beta(u(i)) X^i . </math>
Then the sequence ''u'' is ''q''-automatic if and only if this formal power series is [[Algebraic function|algebraic]] over '''F'''<sub>''q''</sub>(''X''). This result is due to Christol, and it is referred to in the literature as ''Christol's theorem''.<ref>{{cite journal | first=G. | last=Christol | title=Ensembles presque périodiques ''k''-reconnaissables | journal=Theoret. Comput. Sci. | volume=9 | year=1979 | pages=141–145 | doi=10.1016/0304-3975(79)90011-2 }}</ref>
==History==
Automatic sequences were introduced by [[Julius Richard Büchi|Büchi]] in 1960,<ref>{{cite
The term "automatic sequence" first appeared in a paper of Deshouillers.<ref>{{cite journal | first=J.-M. | last=Deshouillers | title=La répartition modulo 1 des puissances de rationnels dans
==Examples==
Line 79:
*Every automatic sequence is a [[morphic word]].<ref name=LotIII524>Lothaire (2005) p. 524</ref>
*For ''k'' ≥ 2 and ''r'' ≥ 1, a sequence is ''k''-automatic if and only if it is ''k''<sup>''r''</sup>-automatic. This result is due to Eilenberg.<ref>{{cite book | last=Eilenberg | first=Samuel | title=Automata, languages, and machines | volume=A | ___location=Orlando | publisher=[[Academic Press]] | year=1974 | isbn=978-0-122-34001-
*For ''h'' and ''k'' [[Multiplicative independence|multiplicatively independent]], a sequence is both ''h''-automatic and ''k''-automatic if and only if it is ultimately periodic.<ref name=as345>Allouche & Shallit (2003) pp. 345–350</ref> This result is due to Cobham,<ref>{{cite journal | first=A. | last=Cobham | title=On the base-dependence of sets of numbers recognizable by finite automata | journal=Math. Systems Theory | volume=3 | issue=2 | year=1969 | pages=186–192 | doi=10.1007/BF01746527 }}</ref> with a multidimensional generalisation due to Semenov.<ref>{{cite journal | first=A. L. | last=Semenov | title=Presburgerness of predicates regular in two number systems | language=Russian | journal=Sibirsk. Mat. Zh. | volume=18 | year=1977 | pages=403–418 }}</ref><ref>{{ cite journal | journal=Theory of Computing Systems | date=1997 | volume=30 | number=2 | pages=197–220 | title=On the Cobham-Semenov theorem | first1=F. | last1=Point | first2=V. | last2=Bruyère | doi=10.1007/BF02679449 }}</ref>
*If ''u''(''n'') is a ''k''-automatic sequence over an alphabet Σ and ''f'' is a [[uniform morphism]] from Σ<sup>∗</sup> to another alphabet Δ<sup>∗</sup>, then ''f''(''u'') is a ''k''-automatic sequence over Δ.<ref name=ApCoW532>Lothaire (2005) p. 532</ref>
Line 92:
The ___domain of an automatic sequence can be extended from the natural numbers to the integers via ''two-sided'' automatic sequences. This stems from the fact that, given ''k'' ≥ 2, every integer can be represented uniquely in the form <math> \sum_{0 \leq i \leq r} a_{i}(-k)^{i} , </math> where <math>a_{i} \in \{0, \dots, k-1\}</math>. Then a two-sided infinite sequence ''a''(''n'')<sub>''n'' <math>\in \mathbb{Z}</math></sub> is (−''k'')-automatic if and only if its subsequences ''a''(''n'')<sub>n ≥ 0</sub> and ''a''(−''n'')<sub>n ≥ 0</sub> are ''k''-automatic.<ref name=AS162>Allouche & Shallit (2003) p. 162</ref>
The alphabet of a ''k''-automatic sequence can be extended from finite size to infinite size via [[k-regular sequence|''k''-regular sequences]].<ref>{{citation | last1 = Allouche | first1 = J.-P. | last2 = Shallit | first2 = J. | title = The ring of ''k''-regular sequences | journal = Theoret. Comput. Sci. | volume = 98 | issue = 2 | year = 1992 | pages = 163–197 | doi=10.1016/0304-3975(92)90001-v}}</ref>
==See also==
Line 104:
* {{cite book | last1=Berstel | first1=Jean | last2=Lauve | first2=Aaron | last3=Reutenauer | first3=Christophe | last4=Saliola | first4=Franco V. | title=Combinatorics on words. Christoffel words and repetitions in words | series=CRM Monograph Series | volume=27 | ___location=Providence, RI | publisher=[[American Mathematical Society]] | year=2009 | isbn=978-0-8218-4480-9 | url=http://www.ams.org/bookpages/crmm-27 | zbl=1161.68043 }}
* {{cite book | last1=Berstel | first1=Jean | last2=Reutenauer | first2=Christophe | title=Noncommutative rational series with applications | series=Encyclopedia of Mathematics and Its Applications | volume=137 | ___location=Cambridge | publisher=[[Cambridge University Press]] | year=2011 | isbn=978-0-521-19022-0 | zbl=1250.68007 }}
*{{cite journal | last=Cobham | first=Alan | title=Uniform tag sequences | journal=Math. Systems Theory | volume=6 | issue=1–2 | year=1972 | pages=164–192 | doi=10.1007/BF01706087 }}
*{{cite book | last=Lothaire | first=M. | authorlink=M. Lothaire | title=Applied combinatorics on words | others=A collective work by Jean Berstel, Dominique Perrin, Maxime Crochemore, Eric Laporte, Mehryar Mohri, Nadia Pisanti, Marie-France Sagot, [[Gesine Reinert]], Sophie Schbath, Michael Waterman, Philippe Jacquet, [[Wojciech Szpankowski]], Dominique Poulalhon, Gilles Schaeffer, Roman Kolpakov, Gregory Koucherov, Jean-Paul Allouche and [[Valérie Berthé]]| series=Encyclopedia of Mathematics and Its Applications | volume=105 | ___location=Cambridge | publisher=[[Cambridge University Press]] | year=2005 | isbn=978-0-521-84802-
* {{cite book | last=Pytheas Fogg | first=N. | others=Editors [[Valérie Berthé|Berthé, Valérie]]; Ferenczi, Sébastien; Mauduit, Christian; Siegel, A. | title=Substitutions in dynamics, arithmetics and combinatorics | series=Lecture Notes in Mathematics | volume=1794 | ___location=Berlin | publisher=[[Springer-Verlag]] | year=2002 | isbn=978-3-540-44141-
==Further reading==
* {{cite book | editor1-last=Berthé | editor1-first=Valérie | editor2-last=Rigo | editor2-first=Michel | title=Combinatorics, automata, and number theory | series=Encyclopedia of Mathematics and its Applications | volume=135 | ___location=Cambridge | publisher=[[Cambridge University Press]] | year=2010 | isbn=978-0-521-51597-9 | zbl=1197.68006 }}
*{{cite book | first=J. H. | last=Loxton | chapter=13.
*{{citation | last = Rowland | first = Eric | title = What is ... an automatic sequence? | journal = Notices of the American Mathematical Society | volume = 62 | issue = 3 | year = 2015 | pages = 274–276 |
*{{cite book | editor1-first=Dennis A. | editor1-last=Hejhal | editor1-link=Dennis Hejhal | editor2-last=Friedman | editor2-first=Joel | editor3-last=Gutzwiller | editor3-first=Martin C. | editor3-link=Martin Gutzwiller | editor4-last=Odlyzko | editor4-first=Andrew M. | editor4-link=Andrew Odlyzko | title=Emerging applications of number theory. Based on the proceedings of the IMA summer program, Minneapolis, MN, USA, July 15–26, 1996 | series=The IMA volumes in mathematics and its applications | volume=109 | publisher=[[Springer-Verlag]] | year=1999 | isbn=978-0-387-98824-
{{DEFAULTSORT:Automatic Sequence}}
|