Content deleted Content added
m →References: task, replaced: Mathematical Programming: Series B → Mathematical Programming, Series B |
Citation bot (talk | contribs) m Alter: isbn. Add: citeseerx, mr, chapter-url. Removed parameters. | You can use this bot yourself. Report bugs here. | User-activated. |
||
Line 3:
<!-- {{Context|date=May 2012}} -->
[[File:Unitcube.svg|thumb|right|alt=A three-dimensional cube|The criss-cross algorithm visits all 8 corners of the [[Klee–Minty cube]] in the worst case. It visits 3 additional corners on average. The Klee–Minty cube is a perturbation of the cube shown here.]]
In [[optimization (mathematics)|mathematical optimization]], the '''criss-cross algorithm''' is any of a family of [[algorithm]]s for [[linear programming]]. Variants of the criss-cross algorithm also solve more general problems with [[linear programming|linear inequality constraints]] and [[nonlinear programming|nonlinear]] [[optimization (mathematics)|objective functions]]; there are criss-cross algorithms for [[linear-fractional programming]] problems,<ref name="LF99Hyperbolic">{{harvtxt|Illés|Szirmai|Terlaky|1999}}</ref><ref name="Bibl" >{{cite journal|first=I. M.|last=Stancu-Minasian|title=A sixth bibliography of fractional programming|journal=Optimization|volume=55|number=4|date=August 2006
Like the [[simplex algorithm]] of [[George Dantzig|George B. Dantzig]], the criss-cross algorithm is not a [[time complexity|polynomial-time algorithm]] for linear programming. Both algorithms visit all 2<sup>''D''</sup> corners of a (perturbed) [[unit cube|cube]] in dimension ''D'', the [[Klee–Minty cube]] (after [[Victor Klee]] and [[George J. Minty]]), in the [[worst-case complexity|worst case]].<ref name="Roos" >{{harvtxt|Roos|1990}}</ref><ref name="KleeMinty"/> However, when it is started at a random corner, the criss-cross algorithm [[Average-case complexity|on average]] visits only ''D'' additional corners.<ref name="FTNamiki"/><ref name="FukudaNamiki"/><ref name="Borgwardt">The simplex algorithm takes on average ''D'' steps for a cube. {{harvtxt|Borgwardt|1987}}: {{cite book|last=Borgwardt|first=Karl-Heinz|title=The simplex method: A probabilistic analysis|series=Algorithms and Combinatorics (Study and Research Texts)|volume=1|publisher=Springer-Verlag|___location=Berlin|year=1987|pages=xii+268|isbn=978-3-540-17096-
==History==
Line 38:
===Other optimization problems with linear constraints===
There are variants of the criss-cross algorithm for linear programming, for [[quadratic programming]], and for the [[linear complementarity problem|linear-complementarity problem]] with "sufficient matrices";<ref name="FukudaTerlaky"/><ref name="FTNamiki"/><ref name="FukudaNamikiLCP" >{{harvtxt|Fukuda|Namiki|1994|}}</ref><ref name="OMBook" >{{cite book|last=Björner|first=Anders|last2=Las Vergnas|first2=Michel|author2-link=Michel Las Vergnas|last3=Sturmfels|first3=Bernd|authorlink3=Bernd Sturmfels|last4=White|first4=Neil|last5=Ziegler|first5=Günter|authorlink5=Günter M. Ziegler|title=Oriented Matroids|chapter=10 Linear programming|publisher=Cambridge University Press|year=1999|isbn=978-0-521-77750-6|chapter-url=http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511586507|pages=417–479|doi=10.1017/CBO9780511586507|
url=http://www.cs.elte.hu/opres/orr/download/ORR03_1.pdf|format=pdf<!--|eprint=http://www.tandfonline.com/doi/pdf/10.1080/10556780500095009-->|mr=2195759|<!-- ref=harv -->}}</ref> conversely, for linear complementarity problems, the criss-cross algorithm terminates finitely only if the matrix is a sufficient matrix.<ref name="HRT"/><ref name="CIsufficient"/> A [[sufficient matrix]] is a generalization both of a [[positive-definite matrix]] and of a [[P-matrix]], whose [[principal minor]]s are each positive.<ref name="HRT"/><ref name="CIsufficient"/><ref>{{cite journal|last1=Cottle|first1=R. W.|authorlink1=Richard W. Cottle|last2=Pang|first2=J.-S.|last3=Venkateswaran|first3=V.|title=Sufficient matrices and the linear complementarity problem|journal=Linear Algebra and its Applications|volume=114–115|date=March–April 1989|pages=231–249|doi=10.1016/0024-3795(89)90463-1|url=http://www.sciencedirect.com/science/article/pii/0024379589904631|mr=986877|ref=harv}}</ref> The criss-cross algorithm has been adapted also for [[linear-fractional programming]].<ref name="LF99Hyperbolic"/><ref name="Bibl"/>
Line 60:
|issue=4
|mr=278972
|chapter-url=http://www.math.washington.edu/~rtr/papers/rtr-ElemVectors.pdf|ref=harv|id=[http://www.math.washington.edu/~rtr/papers/rtr-ElemVectors.pdf PDF reprint]}}</p><p>Rockafellar was influenced by the earlier studies of [[Albert W. Tucker]] and [[George J. Minty]]. Tucker and Minty had studied the sign patterns of the matrices arising through the pivoting operations of Dantzig's simplex algorithm.</p>
</ref> Indeed, Bland's pivoting rule was based on his previous papers on oriented-matroid theory. However, Bland's rule exhibits cycling on some oriented-matroid linear-programming problems.<ref name="OMBook"/> The first purely combinatorial algorithm for linear programming was devised by [[Michael J. Todd (mathematician)|Michael J. Todd]].<ref name="OMBook"/><ref name="Todd"/> Todd's algorithm was developed not only for linear-programming in the setting of oriented matroids, but also for [[quadratic programming|quadratic-programming problems]] and [[linear complementarity problem|linear-complementarity problem]]s.<ref name="OMBook"/><ref name="Todd" >{{cite journal|last=Todd|first=Michael J.|authorlink=Michael J. Todd (mathematician)|title=Linear and quadratic programming in oriented matroids|journal=Journal of Combinatorial Theory|series=Series B|volume=39|year=1985|number=2|pages=105–133|mr=811116|doi=10.1016/0095-8956(85)90042-5|ref=harv}}</ref> Todd's algorithm is complicated even to state, unfortunately, and its finite-convergence proofs are somewhat complicated.<ref name="OMBook"/>
Line 77:
==References==
* {{cite journal
* {{cite journal|first1=Zsolt|last1=Csizmadia|first2=Tibor|last2=Illés|title=New criss-cross type algorithms for linear complementarity problems with sufficient matrices|journal=Optimization Methods and Software|volume=21|year=2006|number=2|pages=247–266|doi=10.1080/10556780500095009|
url=http://www.cs.elte.hu/opres/orr/download/ORR03_1.pdf|format=pdf<!--|eprint=http://www.tandfonline.com/doi/pdf/10.1080/10556780500095009--> |mr=2195759|ref=harv}}
* {{cite journal|last1=Fukuda|first1=Komei|authorlink1=Komei Fukuda|last2=Namiki|first2=Makoto|title=On extremal behaviors of Murty's least index method|journal=Mathematical Programming|date=March 1994|pages=365–370|volume=64|number=1|doi=10.1007/BF01582581|ref=harv|mr=1286455}}
* {{cite journal|first1=Komei|last1=Fukuda| authorlink1=Komei Fukuda |first2=Tamás|last2=Terlaky| authorlink2=Tamás Terlaky |title=Criss-cross methods: A fresh view on pivot algorithms |journal=Mathematical Programming, Series B|volume=79|pages=369–395|issue=Papers from the 16th International Symposium on Mathematical Programming held in Lausanne, 1997, number 1–3 |editor1-first=Thomas M.|editor1-last=Liebling|editor2-first=Dominique|editor2-last=de Werra
* {{cite journal|first1=D.|last1=den Hertog|first2=C.|last2=Roos|first3=T.|last3=Terlaky|title=The linear complementarity problem, sufficient matrices, and the criss-cross method|journal=Linear Algebra and its Applications|volume=187|date=1 July 1993|pages=1–14|url=http://core.ac.uk/download/pdf/6714737.pdf|doi=10.1016/0024-3795(93)90124-7|ref=harv
* {{<!-- citation -->cite journal|title=The finite criss-cross method for hyperbolic programming|journal=European Journal of Operational Research|volume=114|number=1|
pages=198–214|year=1999|<!-- issn=0377-2217 -->|doi=10.1016/S0377-2217(98)00049-6|url=http://www.sciencedirect.com/science/article/B6VCT-3W3DFHB-M/2/4b0e2fcfc2a71e8c14c61640b32e805a
Line 90:
* {{cite journal|last=Terlaky|first=T.|title=A convergent criss-cross method|journal=Optimization: A Journal of Mathematical Programming and Operations Research|volume=16|year=1985|number=5|pages=683–690|issn=0233-1934|doi=10.1080/02331938508843067|ref=harv|mr=798939|<!-- Google scholar reported no free versions -->}}
* {{cite journal|last=Terlaky|first=Tamás|authorlink=Tamás Terlaky|title=A finite crisscross method for oriented matroids|volume=42|year=1987|number=3|pages=319–327|journal=Journal of Combinatorial Theory|series=Series B|issn=0095-8956|doi=10.1016/0095-8956(87)90049-9|mr=888684|ref=harv|<!-- Google scholar reported no free versions -->}}
* {{cite journal|last1=Terlaky|first1=Tamás| authorlink1=Tamás Terlaky |last2=Zhang|first2=Shu Zhong|title=Pivot rules for linear programming: A Survey on recent theoretical developments|issue=Degeneracy in optimization problems, number 1 |journal=Annals of Operations Research|volume=46–47|year=1993|pages=203–233 |doi=10.1007/BF02096264|mr=1260019 |citeseerx = 10.1.1.36.7658 | origyear = 1991
* {{cite journal|last=Wang|first=Zhe Min|title=A finite conformal-elimination free algorithm over oriented matroid programming|journal=Chinese Annals of Mathematics (Shuxue Niankan B Ji)|series=Series B|volume=8|year=1987|number=1|pages=120–125|issn=0252-9599|mr=886756|ref=harv|<!-- Google scholar reported no free versions -->}}
|