Content deleted Content added
Undid revision 883765682 by Alexander Davronov (talk) partial revert; fix placement and date of cleanup template per WP:HNP, and remove WP:DRIVEBY clarify tag |
misc cleanup |
||
Line 2:
{{More footnotes|date=February 2019}}
In
[[Image:StepFunctionExample.png|thumb|right|250px|Example of a step function (the red graph). This particular step function is [[Continuous_function#Directional_and_semi-continuity|right-continuous]].]]
==Definition and first consequences==
A function <math>f
:<math>f(x) = \sum\limits_{i=0}^n \alpha_i \chi_{A_i}(x)\,</math> for all real numbers <math>x</math>
where <math>n\ge 0
:<math>\chi_A(x) = \begin{cases}
1 & \
0 & \
\end{cases}</math>
In this definition, the intervals <math>A_i</math> can be assumed to have the following two properties:
# The intervals are [[disjoint set|pairwise disjoint]]
# The [[union (set theory)|union]] of the intervals is the entire real line
Indeed, if that is not the case to start with, a different set of intervals can be picked for which these assumptions hold. For example, the step function
:<math>f = 4 \chi_{[-5, 1)} + 3 \chi_{(0, 6)}
can be written as
:<math>f = 0\chi_{(-\infty, -5)} +4 \chi_{[-5, 0]} +7 \chi_{(0, 1)} + 3 \chi_{[1, 6)}+0\chi_{[6, \infty)}.
==Examples==
[[Image:Dirac distribution CDF.svg|325px|thumb|The [[Heaviside step function]] is an often-used step function.]]
* A [[constant function]] is a trivial example of a step function. Then there is only one interval, <math>A_0=\mathbb R.</math>
* The [[sign function]] <math>\sgn(x),</math>
* The [[Heaviside step function|Heaviside function]] {{math|''H''(''x'')}}, which is 0 for negative numbers and 1 for positive numbers,
[[File:Rectangular function.svg|thumb|The [[rectangular function]], the next simplest step function.]]
* The [[rectangular function]], the normalized [[boxcar function]],
=== Non-examples ===
Line 39:
* The sum and product of two step functions is again a step function. The product of a step function with a number is also a step function. As such, the step functions form an [[algebra over a field|algebra]] over the real numbers.
* A step function takes only a finite number of values. If the intervals <math>A_i,</math> for <math>i=0, 1, \dots, n
* The [[definite integral]] of a step function is a [[piecewise linear function]].
* The [[Lebesgue integral]] of a step function <math>\textstyle f = \sum\limits_{i=0}^n \alpha_i \chi_{A_i}
*A [[discrete random variable]] is defined as a [[random variable]] whose [[cumulative distribution function]] is piecewise constant.<ref name=":0">{{Cite book|url=https://www.worldcat.org/oclc/51441829|title=Introduction to Probability|last=Bertsekas|first=Dimitri P.|date=2002|publisher=Athena Scientific|others=Tsitsiklis, John N., Τσιτσικλής, Γιάννης Ν.|year=|isbn=188652940X|___location=Belmont, Mass.|pages=|oclc=51441829}}</ref>
|