Content deleted Content added
Citation bot (talk | contribs) m Add: citeseerx. Removed parameters. | You can use this bot yourself. Report bugs here. | User-activated. |
|||
Line 6:
Most work on wireless communications until the early 1990s had focused on having an antenna array at only one end of the wireless link — usually at the receiver.<ref>E. Larsson and P. Stoica,''Space-Time Block Coding For Wireless Communications''. Cambridge University Press, UK, 2003 (Chinese Edition, 2006).</ref> Seminal papers by Gerard J. Foschini and Michael J. Gans,<ref>{{cite journal|author1=Gerard J. Foschini |author2=Michael. J. Gans |lastauthoramp=yes |title=On limits of wireless communications in a fading environment when using multiple antennas|journal=Wireless Personal Communications|pages=311–335|volume=6|issue=3|date=January 1998|doi=10.1023/A:1008889222784}}</ref> Foschini<ref>{{cite journal|author=Gerard J. Foschini|title=Layered space-time architecture for wireless communications in a fading environment when using multi-element antennas|journal=Bell Labs Technical Journal |pages=41–59|volume=1|date=Autumn 1996|doi=10.1002/bltj.2015|issue=2}}</ref> and Emre Telatar<ref>{{cite journal|author=I. Emre Telatar|title=Capacity of multi-antenna gaussian channels|journal=European Transactions on Telecommunications|date=November 1999|pages=585–595|volume=10|doi=10.1002/ett.4460100604|issue=6}}</ref> enlarged the scope of wireless communication possibilities by showing that for the highly scattering environment substantial capacity gains are enabled when antenna arrays are used at both ends of a link.
An alternative approach to utilizing multiple antennas relies on having multiple transmit antennas and only optionally multiple receive antennas. Proposed by [[Vahid Tarokh]], [[Nambi Seshadri]] and [[Robert Calderbank]], these space–time codes<ref name="sttc">{{cite journal|author1=Vahid Tarokh |author2=Nambi Seshadri |author3=A. R. Calderbank |last-author-amp=yes |title=Space–time codes for high data rate wireless communication: Performance analysis and code construction|journal=IEEE Transactions on Information Theory|pages=744–765|volume=44|issue=2|date=March 1998|doi=10.1109/18.661517|citeseerx=10.1.1.112.4293 }}</ref> (STCs) achieve significant [[bit error rate|error rate]] improvements over single-antenna systems. Their original scheme was based on [[convolutional code|trellis codes]] but the simpler [[block code]]s were utilised by [[Siavash Alamouti]],<ref name="alamouti">{{cite journal|author=S.M. Alamouti|title=A simple transmit diversity technique for wireless communications|journal=IEEE Journal on Selected Areas in Communications|pages=1451–1458|volume=16|issue=8|date=October 1998|doi=10.1109/49.730453}}</ref> and later [[Vahid Tarokh]], [[Hamid Jafarkhani]] and [[Robert Calderbank]]<ref name="stbc">{{cite journal|author1=Vahid Tarokh|author2=Hamid Jafarkhani|author3=A. R. Calderbank|last-author-amp=yes|title=Space–time block codes from orthogonal designs|journal=[[IEEE Transactions on Information Theory]]|pages=744–765|volume=45|issue=5|date=July 1999|url=http://www.mast.queensu.ca/~math800/W03/papers/TrkhJafarkCldb_IT99.pdf
An STBC is usually represented by a [[matrix (mathematics)|matrix]]. Each row represents a time slot and each column represents one antenna's transmissions over time.
Line 87:
===Higher order STBCs===
Tarokh et al. discovered a set of STBCs<ref name="stbc" /><ref name="perform">{{cite journal|author1=Vahid Tarokh|author2=Hamid Jafarkhani|author3=A. Robert Calderbank|last-author-amp=yes|title=Space–time block coding for wireless communications: performance results|journal=IEEE Journal on Selected Areas in Communications|pages=451–460|volume=17|issue=3|date=March 1999|url=http://www.mast.queensu.ca/~math800/W03/papers/TrkhJafarkCldb_JSAC99.pdf|doi=10.1109/49.753730
====3 transmit antennas====
Line 168:
==Rate limits==
Apart from there being no full-rate, complex, orthogonal STBC for more than 2 antennas, it has been further shown that, for more than two antennas, the maximum possible rate is 3/4.<ref name="bounds">{{cite journal|author1=Haiquan Wang |author2=Xiang-Gen Xia |lastauthoramp=yes |title=Upper bounds of rates of complex orthogonal space–time block codes|journal=IEEE Transactions on Information Theory|pages=2788–2796|volume=49|issue=10|date=October 2003|doi=10.1109/TIT.2003.817830|citeseerx=10.1.1.134.6261 }}</ref> Codes have been designed which achieve a good proportion of this, but they have very long block-length. This makes them unsuitable for practical use, because decoding cannot proceed until ''all'' transmissions in a block have been received, and so a longer block-length, <math>T</math>, results in a longer decoding delay. One particular example, for 16 transmit antennas, has rate-9/16 and a block length of 22 880 time-slots!<ref>{{cite journal|author1=Weifeng Su |author2=Xiang-Gen Xia |author3=K. J. Ray Liu |last-author-amp=yes |title=A systematic design of high-rate complex orthogonal space-time block codes|journal=IEEE Communications Letters|pages=380–382|volume=8|issue=6|date=June 2004|doi=10.1109/LCOMM.2004.827429|citeseerx=10.1.1.420.1452 }}</ref>
It has been proven<ref name="COD">{{cite journal|author=Xue-Bin Liang|title=Orthogonal Designs With Maximum Rates|journal=IEEE Transactions on Information Theory|pages=2468–2503|volume=49|issue=10|date=October 2003|doi=10.1109/TIT.2003.817426}}</ref> that the highest rate any <math>n_T</math>-antenna code can achieve is
Line 177:
==Quasi-orthogonal STBCs==
These codes exhibit partial orthogonality and provide only part of the diversity gain mentioned [[#Diversity criterion|above]]. An example reported by [[Hamid Jafarkhani]] is:<ref>{{cite journal|author=Hamid Jafarkhani|title=A quasi-orthogonal space–time block code|journal=IEEE Transactions on Communications|pages=1–4|volume=49|issue=1|date=January 2001|doi=10.1109/26.898239|citeseerx=10.1.1.136.1830}}</ref>
:<math>C_{4,1} =
\begin{bmatrix}
|