Content deleted Content added
Citation bot (talk | contribs) m Alter: title. Add: date. | You can use this bot yourself. Report bugs here. | User-activated. |
NbspCleaner (talk | contribs) m fix nbsp typo |
||
Line 25:
The RLWE-KEX uses polynomials which are considered "small" with respect to a measure called the "[[infinity norm]]." The infinity norm for a polynomial is simply the value of the largest coefficient of the polynomial when the coefficients are considered as integers in '''Z''' rather than <math>Zq</math> (i.e.from the set {−(''q'' − 1)/2,..., 0, ... (''q'' − 1)/2} ). The algorithm's security depends on an ability to generate random polynomials which are small with respect to the infinity norm. This is done simply by randomly generating the coefficients for a polynomial (s<sub>n-1</sub>, ..., s<sub>0</sub>) which are guaranteed or very likely to be small. There are two common ways to do this:
# Using [[Uniform distribution (discrete)|Uniform Sampling]] – The coefficients of the small polynomial are uniformly sampled from a set of small coefficients. Let ''b'' be an integer that is much less than ''q''. If we randomly choose coefficients from the set: { −''b'', −b + 1, −b + 2. ... −2, −1, 0, 1, 2, ... , ''b'' − 2, ''b'' − 1, ''b''} the polynomial will be small with respect to the bound (b). Singh suggest using b = 5.<ref name=":1" /> Thus coefficients would be chosen from the set {''q'' − 5, ''q'' − 4, ''q'' − 3, ''q'' − 2, ''q'' − 1, 0, 1, 2, 3, 4, 5 }.
# Using [[Gaussian distribution|Discrete Gaussian]] Sampling – For an odd value for q, the coefficients are randomly chosen by sampling from the set { −(q − 1)/2 to (''q''&
For the rest of this article, the random small polynomials will be sampled according to a distribution which is simply specified as '''D'''. Further q will be an odd prime such that q is congruent to 1 mod 4 and 1 mod 2n. Other cases for q and n are thoroughly discussed in "A Toolkit for Ring-LWE Cryptography" and in Singh's "Even More Practical Key Exchange for the Internet using Lattice Cryptography."<ref name=":2">{{Cite journal|last=Lyubashevsky|first=Vadim|last2=Peikert|first2=Chris|last3=Regev|first3=Oded|date=2013|title=A Toolkit for Ring-LWE Cryptography|url=http://eprint.iacr.org/2013/293}}</ref><ref>{{Cite web|title = Cryptology ePrint Archive: Report 2015/1120|url = http://eprint.iacr.org/2015/1120|website = eprint.iacr.org|access-date = 2016-01-17}}</ref> and another paper by Singh. A fixed public polynomial, a(x), shared by all users of the network. It is deterministically generated from a cryptographically secure source.
|