Content deleted Content added
m →Relation to adjugate matrices: lk G.B. Price |
Citation bot (talk | contribs) m Alter: pages, issue. Add: jstor. Formatted dashes. | You can use this bot yourself. Report bugs here. | User-activated. |
||
Line 76:
** Normal.
* If {{math|''A''}} is invertible, then so is {{math|''C''<sub>''r''</sub>(''A'')}}, and {{math|1=''C''<sub>''r''</sub>(''A''{{i sup|−1}}) = ''C''<sub>''r''</sub>(''A''){{i sup|−1}}}}.
* (Sylvester–Franke theorem) If {{math|1 ≤ ''r'' ≤ ''n''}}, then <math>\det C_r(A) = (\det A)^{\binom{n-1}{r-1}}</math>.<ref name="Tornheim1952">{{cite journal|last1=Tornheim|first1=Leonard|title=The Sylvester–Franke Theorem|journal=The American Mathematical Monthly|volume=59|issue=6|year=1952|pages=
==Relation to exterior powers==
Line 113:
and let {{math|''J''}} denote the ''[[exchange matrix]]'':
:<math>J = \begin{pmatrix} & & 1 \\ & \cdots & \\ 1 & & \end{pmatrix}.</math>
Then '''Jacobi's theorem''' states that the {{math|''r''}}th higher adjugate matrix is:<ref name="NambiarSreevalsan2001">{{cite journal|last1=Nambiar|first1=K.K.|last2=Sreevalsan|first2=S.|title=Compound matrices and three celebrated theorems|journal=Mathematical and Computer Modelling|volume=34|issue=
:<math>\operatorname{adj}_r(A) = JC_{n-r}(SAS)^TJ.</math>
|