Content deleted Content added
The referenced article for caterpilar tree uses a different definition than the mentioned paper. The definition from the other article allows for a very simple algorithm. The bandwidth of such a caterpilar tree according to the algorithm is just maximum degree + 1. |
m Open access bot: add arxiv identifier to citation with #oabot. |
||
Line 71:
==References==
{{reflist}}
*{{Cite journal | last1 = Böttcher | first1 = J. | last2 = Pruessmann | first2 = K. P. | last3 = Taraz | first3 = A. | last4 = Würfl | first4 = A. | title = Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs | doi = 10.1016/j.ejc.2009.10.010 | journal = European Journal of Combinatorics | volume = 31 | pages = 1217–1227 | year = 2010 | pmid = | pmc = |ref=harv | arxiv = 0910.3014 }}
*{{Cite journal | last1 = Chinn | first1 = P. Z. |author1-link=Phyllis Chinn| last2 = Chvátalová | first2 = J. | last3 = Dewdney | first3 = A. K. |author3-link=Alexander Dewdney| last4 = Gibbs | first4 = N. E. | title = The bandwidth problem for graphs and matrices—a survey | journal = Journal of Graph Theory | volume = 6 | pages = 223–254| year = 1982 | doi = 10.1002/jgt.3190060302 |ref=harv}}
*{{citation
|